
Accelerating Turbulence Computations on Blue Waters
⋄

P.K. Yeung1 and D. Pekurovsky2

1Schools of Aerospace Engineering, Computational Science and Engineering,

and Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

2San Diego Supercomputer Center,

University of California San Diego, La Jolla, CA 92093

ABSTRACT

Direct numerical simulation of turbulence using Fourier

pseudo-spectral methods is a very communication inten-

sive application in high performance computing. Several

techniques, including multithreading, remote memory

addressing, coarse-grained overlapping based on non-

blocking collective communication, and use of dedicated

partitions, have been tested in pursuit of improving code

performance on Blue Waters at large problem sizes. We

discuss the lessons learned and the most promising ap-

proaches for sustained production runs in the future.

1 INTRODUCTION

Turbulence is a very common state of fluid motion where

the flow is three-dimensional (3D), unsteady, stochas-

tic, and is characterized by nonlinear interactions among

fluctuations spanning a wide range of scales, in both

length and time. The flow around an airplane and in its

jet engines, the dispersion of smoke from a chimney, and

disturbances in the atmosphere that give rise to stormy

weather, to name a few, are all turbulent. As a result,

given the complexity of the subject (see, e.g., [1],[2]), it

is not surprising that limitations in understanding turbu-

lence and or manipulating its effects often play a key role

in important technological problems of societal concern.

The highest-fidelity approach to computing turbu-

lence is direct numerical simulation (DNS) [3], in which

the instantaneous velocity field is computed from the ba-

sic governing equations for conservation ofmass andmo-

mentum. However, to capture all scales reliably the do-

main size must be large, and the grid spacing must be

small; and similar consideration applies to time-stepping

as well. Since the range of scales increases rapidly

with the Reynolds number (which is high in most ap-

plications), it is clear that state-of-the-art simulations are

highly resource-intensive and tied to advances in super-

computing power worldwide (e.g. [4, 5, 6, 7]).

Most theories in turbulence are dependent on as-

sumptions in the physics of how different scales inter-

act at high Reynolds number, usually with some degree

of scale similarity relatively insensitive to the bound-

ary conditions. In principle, at least, the fundamen-

tal physics of small and intermediate scales can be ad-

dressed by considering unbounded homogeneous turbu-

lence on a 3D domainwith periodic boundary conditions.

The velocity field is represented by a number of Fourier

modes, and numerical solutions can be obtained using a

pseudo-spectral approach (see [8],[9]). Nonlinear terms

in the equations of motion are formed by straightfor-

ward multiplication in physical space instead of using (a

much more costly) convolution integral in wavenumber

space, provided suitable measures are taken to mitigate

the aliasing errors that arise. The primary mathematical

operation is the three 3D Fast Fourier Transform (FFT),

which has an operations count scaling as N3 ln2 N , and

has many other applications in science and engineering.

To allow the code to scale up to very core counts, we

use a 2D domain decomposition [10, 11], in which the

data are divided in two directions and stored as a col-

lection of pencils in the local memory of a large number

of parallel MPI processes. This decomposition also de-

fines a 2D MPI Cartesian processor grid, of dimensions

M1×M2 = M whereM is the number of MPI tasks. How-

ever, because Fourier series are global in nature, com-

pletion of a full 3D transform requires data to be trans-

posed between pencils aligned with different coordinates

axes, at each time step of the DNS code. This transpose

requires message passing of a collective nature, among

all MPI tasks belonging to one ofM2 row communicator

(each of size M1) or one of M1 column communicators

(each of size M2). Communication costs are the primary

bottleneck, especially at large core counts where commu-

nication overhead may increase significantly. On a large

shared system like Blue Waters, network contention for

communication bandwidth with other jobs on the system

also causes significant variability.

The considerations above lead to a strong motivation

to reduce net communication costs as the primary route

improving code performance. Accordingly the overall

objective of our activities within the terms of the Blue

Waters NEIS-P2 subaward is to explore the use of various

alternative programming models, including multithread-

ing, remote memory addressing, and other approaches

that became feasible as our efforts progressed. Most of

the work required to test and evaluate a new program-

ming model or a new approach to perform communica-

tion is carried out using a 3D FFT kernel that has a data

structure similar to the DNS code, which we refer to be-

low as PSDNS (Petascale DNS).

Currently our production PSDNS code is a hybridized

MPI-OpenMP version, written in the so-called ”fun-

neled” mode where only the master thread on each MPI

task makes communication calls. The code performs

as pure MPI if the number of threads per MPI task is

unity. Collective communication required in the data

transposes is performed in a blocking manner, using ei-

ther standard MPI ALLTOALL (or MPI ALLTOALLV)

functions or Fortran co-arrays in the Cray Compiler En-

vironment. Use of co-arrays, which is based on remote

memory addressing principles, usually gives better per-

formance especially at large problem sizes. We have used

FFT kernels to study possible benefits from the use of sev-

eral other programming models, such as overlapping be-

tween master-thread communication and worker-thread

computation using OpenMP, overlapping between com-

putation and communication using non-blocking collec-

tive communication, as well as the use of graphical pro-

cessor units via the OpenACC accelerator library. The

codes have also been tested on other leading-edge plat-

forms at multiple sites. However in this document we fo-

cus on developments on BlueWaters, including machine-

dependent considerations such as the use of reserved and

dedicated partitions.

The rest of the paper is organized as follows. In the

next section we give the mathematical formulation of the

equations solved in the DNS code. In Sec. 3 we dis-

cuss the formulation and performance of the parallel al-

gorithm we currently use for production purposes. In

Sec. 4 we report on several strategies that we have tested

in pursuit of performance improvement on Blue Waters.

It should be noted that further efforts are to be made, es-

pecially along the lines described in Secs. 4.3. The best

performance to-date, however, has been obtained when

running on a dedicated partition as reported in Sec. 5. We

conclude in Sec. 6 with a summary of the lessons learned

and a further discussion of the possible use of dedicated

partitions for sustained production runs in the future.

2 MATHEMATICAL FORMULATION

The PSDNS code computes instantaneous velocity fields

u(x, t) according to the Navier Stokes equations which

represent conservation of momentum, in incompressible

flow where the velocity vector is solenoidal (∇ · u = 0).

Assuming zero mean velocity, we can write

∂u/∂t + u · ∇u = −∇(p/ρ) + ν∇2
u + f , (1)

where the density (ρ) and viscosity (ν) are constant, and f

denotes any body forces such as those representing solid

body rotation or magnetohydrodynamic effects, as well

as numerical forcing which is often used to maintain the

energy of the velocity fluctuations against viscous de-

cay. Important phenomena in turbulent mixing and dis-

persion can be studied by solving additional equations

for passive scalar field, and by following the trajectories

of fluid or suspended articles whose velocities may be

obtained by interpolation from velocities at neighboring

grid points.

By transforming Eq. 1 to Fourier space one can readily

show that velocity Fourier coefficient û(k, t) evolves by

(∂/∂t + νk2)û = Ĉ⊥k (2)

where on the r.h.s. the nonlinear convective terms are

projected onto the plane perpendicular to k in Fourier

space. For each k, Eq. 2 can be treated as an ordinary

differential equation in time, for which explicit Runge-

Kutta methods are applicable. We use a a variant of Eq. 2,

namely in the formulation of [12], which allows a slight

reduction of the number of variables that must be trans-

formed at each time step. Aliasing errors are controlled

by truncation and phase-shifting techniques as described

in [12]. Because the velocity field is real-valued, conjugate

symmetry applies, i.e. û(−k) = û
∗(k). This also means

that for every N3 grid points, only 1

2
N3 Fourier modes

are independent. Accordingly, Fourier modes with nega-

tive wavenumbers in one arbitrarily chosen (x) direction

are not stored explicitly in the code.

At the beginning of each Runge-Kutta substep the ve-

locity field is in Fourier space, with each MPI task hold-

ing pencils of data aligned in the y direction. We first

take a complex-to-complex (C-C) FFT to physical space

in the y direction. The data then needs to be transposed

into pencils aligned in z, whereupon a C-C FFT is per-

formed in z. Finally the data are transposed into pencils

aligned in x, and (because only modes with kx ≥ 0 are

kept) a complex-to-real (C-R) transform is taken. All vari-

ables are then in physical space, where nonlinear terms

are subsequently formed by multiplication. A reverse cy-

cle of transforms and transposes back to Fourier space

gives the r.h.s of Eq. 2 (or its equivalent). Finally ex-

plicit time-stepping according to the chosen Runge-Kutta

P0

P1

P2

P3

P4

P8

P6

P7

P5

P9

P10

P11

P14

P12

P13

P15

N/M1

grid points
{

N/M2

grid points
{

X

Z

Y

Figure 1: Illustration of 2D domain decomposition with M1 =

M2 = 4 (M = 16).

scheme is applied, followed by a repeat for subsequent

Runge-Kutta substeps that constitute together a complete

time step in the code.

As noted earlier we use an FFT kernel to assess the

effectiveness of new programming models. The action of

the kernel consists of setting up a simple sinusoidal fields

in physical space, such as u = sin(x) cos(y) sin(z), trans-

forming it to wavenumber space, and back, for a number

of times. Elapsed wall times taken in major subroutines

are recorded and also broken down into costs incurred in

communication, FFTs (in each direction), and the packing

and unpacking which are necessary because communica-

tion calls must be executed using contiguous messages.

Correctness of results is checked by comparing the spec-

trum to the expected result of a single spike, and by re-

quiring the maximum absolute difference between initial

and final results to be below thresholds for round-off er-

rors depending on the use of single versus double ma-

chine precision. Because the numerical algorithm we use

([12]) includes operations carried out on partially trans-

formed variables at the immediate stages, in the DNS

code we do not directly use a P3DFFT library developed

by one of the authors [11]. However, many principles are

similar, and newly developed versions of key routines in

the FFT kernel can be used directly in the DNS code with-

out significant changes.

3 BASE ALGORITHM AND CODE PERFORMANCE

3.1 CURRENT ALGORITHMS

We consider the parallel algorithm in more detail here,

mainly from the perspective of the FFT kernel, which

(unlike the DNS code at the beginning of a time step) is

designed to begin with pencils aligned with x in physi-

1. R-C FFT in x direction.
2. Pack data into contiguous messages
3. Alltoall exchange within row communicator.
4. Unpack receiving buffer into z pencils.
5. C-C FFT in z direction.
6. Pack data into contiguous messages
7. Alltoall exchange within column communicator.
8. Unpack receiving buffer into y pencils.
9. C-C FFT in y direction.

Table 1: Sequence of operations for 3D FFT from physical
space to wavenumber space.

cal space, based on a 2D domain decomposition as illus-

trated in Fig. 1. Each MPI task belongs to a row com-

municator as well as a column communicator. For effi-

cient arithmetic, the array structure is designed to allow

FFTs to be taken with vector stride unity one direction at

a time. The sequence of operations starting from having

data in physical space and x-pencils is laid out in Table 1.

Operations 1-9 above together constitute a complete

3D FFT from physical space to wavenumber space, which

we denote by xktran. Operations 1-4 and 6-9 are collected

into two subroutines, called xkcomm1 and xkcomm2 re-

spectively. Generally, we find better performance by us-

ing a Cartesian processor grid with M1 small compared

to M2 and equal to the number of cores per node, pri-

marily because such an arrangement allows communi-

cations within a row communicator to occur entirely on

node. (On BlueWaters, this means lettingM1 be 16 in sin-

gle stream mode, 32 in dual-stream mode.) For the same

reason, xkcomm2 is more time-consuming than xkcomm1.

It is well understood that alltoall exchanges (especially

on a column communicator) pose the greatest constraint

on scalability. However, depending on size of cache and

memory bandwidth, the time spent on packing and un-

packing, also referred to as “local transpose” operations,

can be substantial as well. An inverse transform involves

a reverse sequence of operations. The times taken for

each half of a forward-backward transform pair are gen-

erally comparable.

Many factors influence the elapsed wall time per FFT

transform cycle (in the FFT kernel) or per time step (in

the DNS code). For the time spent on communication, at

a high level we can consider the total volume of message

traffic, the number and size of individual messages (with

total volume fixed), the manner in which the messages

are sent and received, and the effects of machine topology

and hardware and software environment.

Message volume. Clearly, the total volume of the mes-

sage traffic depends on the number of grid points (N3),

machine precision (4 bytes per word assuming single

precision), and the number of variables that need to be

transformed and transposed as determined by the logic

in the DNS code. In [12]’s formulation this number is

nv = 3 + 2 max(1, nφ), where 0 ≤ nφ ≤ 2 is the number

of so-called passive scalars (if any) carried by the velocity

field. However, we are able to exploit a particular feature

of the dealiasing error treatments in the code to reduce

both message traffic and computational workload signif-

icantly. Specifically, in order to remove multidimensional

alias errors, Fourier modes with wavenumber magnitude

|k| > kmax where kmax =
√

2N/3 (assuming a standard

(2π)3 domain) are truncated (set to zero). Fourier coeffi-

cients for such truncated modes do not need to be trans-

posed or transformed. Within our 2D domain decompo-

sition approach it is convenient explicitly skip modes that

fall outside a cylinder of radius kmax in the kx − kz plane,

under the condition

(k2

x + k2

z)1/2 >
√

2N/3 . (3)

We refer to this scheme as “cylindrical truncation”. Al-

though this captures only a subset of modes with |k| >

kmax the fraction of modes explicitly dropped (propor-

tional to the space between the boundaries of a square of

lengthN/2 and a circumscribed circle of radius
√

2N/3) is

still quite significant. In many cases the savings in cost is

of order 30%, provided care is taken to manage the result-

ing imbalance of workload among different MPI tasks,

since each task then works on a different number of non-

truncated modes.

Message size. For a fixed volume of message traf-

fic, message size depends on the number of MPI tasks,

the processor grid geometry, and whether multiple vari-

ables are transposed separately or together. When com-

munication is performed using MPI, we find that trans-

posing multiple variables together (which leads to fewer

but larger messages) usually brings a slight improvement

(in the order 5-10%), since the overhead due to latency

is reduced. However, if communication is performed

using Fortran co-arrays (see below) better performance

is obtained by explicitly dividing messages into smaller

chunks. The optimal message size may also depend on

environmental variables in the job script which can influ-

ence whether messages of a given size will be exchanged

using the so-called eager or rendezvous protocols.

OpenMP multithreading. The advent of multi-cored

processors has made possible a mode of hybrid pro-

gramming where MPI tasks handle communication but

threads spawned from the MPI tasks perform computa-

tion. We have hybridized the production DNS code com-

pletely, in the so-called funneled mode where only the

master threads make communication calls (while other

threads wait) and each thread carries out computation

on different parts of the data. The code is equivalent to

pure MPI if the number of threads per MPI task (num thr)

is one. The total number of cores used then becomes

the product of number of tasks (M) and num thr. Since

penalty for communication overhead increases with the

number of tasks, for relatively large problem sizes an

increase of num thr with M fixed may give better scal-

ing than an increase ofM with num thr fixed (effectively,

at unity). However, although num thr can in principle

range from 1 to the number of cores per node, because

of NUMA cache coherency considerations a value of 4 or

more usually does not perform better than pure MPI.

Fortran Co-Array. A strategy for data exchange funda-

mentally different from standard MPI message passing is

to implement remote direct memory access (RDMA) pro-

tocols, whereby each MPI task is given permission to up-

date selected areas of the memory of another MPI task

(and vice versa). Conceptually this is analogous to MPI-

2 one-sided communication, but the implementation on

Cray XE and XK platforms within the Cray Compiler En-

vironment (CCE) is apparently very efficient. We are in-

debted to Dr. R.A. Fielder and his colleagues at Cray Inc.

for providing us with an efficient version of the key xk-

comm1 and xkcomm2 (and similar) routines using Fortran

Co-Arrays. (This approach was formerly referred to as

Co-Array Fortran, invoked in compilation by -h caf,

but recently this has been absorbed into the new Fortran

standard.) Essentially, the receiving buffers at operations

4 and 8 listed earlier in Table 1 are declared as co-arrays,

and data exchange is accomplished by a remote assign-

ment statement. Unlike the case of communication using

standard MPI, smaller messages are preferred when us-

ing CA since a different system protocol is used to handle

the actual transfers. In routines written by Dr. Fiedler the

data to be exchanged are broken down into buckets of 512

bytes. We have found consistently that at large problem

sizes and high core counts compared to the CA version

of our PSDNS code consistently perform better than the

other currently implemented options.

3.2 BENCHMARKING AND BASIC PERFORMANCE DATA

The reliability of performance data used to guide

decision-making in our code development processes is

important. In each DNS time step, or each iteration in

the FFT kernel, the elapsed wall time varies among dif-

ferent MPI tasks, and between one step/iteration and the

next. Since all MPI tasks are synchronized from time to

time, the slowest MPI task takes a determining role. On

the other side since variability is largely external to the

code, it is reasonable to take the most favorable time from

several steps (each being from the slowest MPI task). Fur-

thermore, since the user has freedom to specify the pro-

cessor grid geometry we only report data obtained from

the bestM1×M2 combination in each case. It is generally

10
4

10
5

10
1

10
2

Figure 2: CPU timings per step of production DNS code in
single-precision, versus the number of cores used, recorded on
16-cores Cray XK6 (Jaguarpf at Oak Ridge National Laborato-
rier, summer 2012). the number of cores used. All data points
were obtained using pure MPI except the two solid squares
wwhich were obtained with num thr=2 with number of MPI tasks
halved. Grid resolutions tested were 4096

3 (circles) and 8192
3

(triangles). Data points in red are for simulations of veloc-
ity field only (nφ = 0), blue are for those with two scalars
(nφ = 2). Dashed lines of slope 1 indicate limits of perfect scal-
abilty. Fourth-order Runge Kutta scheme was used; timings for
second-order are half of the numbers shown.

fair to compare MPI and MPI-OpenMP codes at the same

number of cores used. If possible, if the intention to per-

form experiments using different approaches at a fixed

core count, we try to reduce the impact of variability as

a factor in the comparisons by running multiple cases in

different sub-directories from the same job script. (This

ensures the same nodes on the system are used in each

case.)

Figure 3: Timings corresponding to those in Fig. 2, but obtained
using Co-Array Fortran for alltoall data exchanges.

Figures 2 and 3 show results on CPU timings for the

DNS code, on the Oak Ridge Cray XK6 which had 16

cores per node. Although the machine configuration

tested then was different from Blue Waters, we expect

these data points to provide at least good initial guidance

for what can be achieved on Blue Waters. It can be seen

in Fig. 2 that scalability for the pure MPI version begins

to trail off as number of cores reaches 65536 or higher,

but OpenMP produced significant improvements at this

core count for the 40963 problem. At the same time, the

timings from CAF shown in Fig. 3 are consistently are fa-

vorable to those in Fig. 2 in all cases represented in both

figures. An improvement in strong scaling (deviating less

from the ideal slope of -1.0) is also evident.

4 NEW PROGRAMMING MODELS

Here we report on our recent work in pursuit of three

new programming models aimed at performance im-

provement. Overall these strategies have not been as suc-

cessful as we would like. although in some cases current

results may not yet be final. Still, there have been useful

exercises, as summarized below.

4.1 OVERLAP USING OPENMP

OpenMP provides for three possible levels of thread

safety, known as funneled, serialized, and multiple respec-

tively. In funneledmodewhen themaster thread performs

communication the other threads are idle. Some overlap-

ping is possible if at any one time some threads are com-

municating while others are computing. However care

must be taken to coordinate traffic among the threads,

so that the network bandwidth can be utilized to maxi-

mum effect with little idle time, without leading to con-

flicts known as race conditions (which will cause incor-

rect results). In serialized mode an ORDERED OpenMP

construct is used to enforce a strict ordering among the

threads. In multiplemode all threads can make MPI calls,

with no restrictions,

A pipelined procedure has been implemented in a se-

rializedMPI-OpenMP version of the FFT kernel. Suppose

we use 4 threads per MPI task, and let each thread un-

dertake operations 1-4 listed in Table 1, and beyond. To

begin, all threads can carry out FFT (R-C in the x direc-

tion) simultaneously. Then thread 0 engages in alltoall

exchange (with the other threads 0 on other MPI tasks).

When this done, thread 1 performs the alltoall as thread

0 proceeds to the unpacking, simultaneously. The se-

quence then repeats until all threads have had their turns

at the alltoall. To ensure correct results some penalty is in-

curred for explicit synchronization. Furthermore if time

taken in unpacking (operation 4) is not close to that in all-

toall (operation 3) then any advantage gained by overlap-

ping will be quite limited. In any case, we have extended

N3 Cores Tasks Threads CPU(secs, F/S/M)
20483 4096 16 × 128 2 3.65 / 3.03 / 2.99
20483 4096 8 × 128 4 5.20 / 4.27 / 3.74
40963 32768 16 × 1024 2 6.15 / 6.11 / 6.74
40963 32768 8 × 1024 4 6.75 / 6.58 / 7.40

Table 2: FFT kernel performance data using OpenMP, on Blue
Waters, for funneled (F), serialized (S), and multiple (M) modes.

1. FFT and pack, variable #1
2. mpix ialltoall (req), variable #1
3. loop over remaining variables: j=2,nv

(a) FFT and pack variable j
(b) wait (on ’req’) for variable j-1
(c) mpix ialltoall (req), variable j
(d) unpack, variable j-1

4. wait and unpack for last variable

Table 3: Pseudo-code for overlap using non-blocking collec-
tives. Each non-blocking communication request is given a tag,
denoted by ‘req’ here for short.

this pipelined procedure to multiple mode as well, where

all threads are allowed to perform alltoall independently,

with no explicit synchronization, but at the risk of ineffi-

ciency due to heavy traffic.

Some OpenMP FFT kernel performance data compar-

ing different levels of thread safety as discussed above are

given in Table 2. For comparison, pure MPI for the same

number of cores gives 3.20 secs for 20483 (4096 cores) and

5.15 secs for 40963 (32768 cores). The relative merits of the

three thread-safety modes are unclear, both among them-

selves and versus pure MPI at large core counts. Signifi-

cant variability between successive trials is also seen.

4.2 OVERLAP VIA NON-BLOCKING MPI COLLECTIVES

The appeal of non-blocking communication calls for al-

lowing overlap with computation (while the messages

are in transit) is well known, but not commonly well

demonstrated in practice. Our effort is a recent one, made

possible by the availability of non-blocking MPI alltoall

(mpix ialltoall, with a request handle as additional argu-

ment) on Blue Waters since March 2013.

We have implemented overlapping by non-blocking

MPI alltoall in a coarse-grained fashion, considering

work needed for a 3D FFT of nv variables. Since all-

toall’s on column communicators are of greater concern

we illustrate in Table 3 the logic in our overlapping ver-

sion of xkcomm2 that carries out operations 6-9 of Ta-

ble 1. In Table 4 we compare xkcomm2 timings for 4

cases, namely (i) standard (blocking) co-arrays, (ii) stan-

dard (blocking) MPI, (iii) non-blocking MPI followed im-

Grid points 10243 20483 40963

No. of MPI tasks 256 2048 16384
Blocking Co-Arrays 0.862 4.06 4.01
Blocking MPI 0.728 3.98 3.17
Non-blocking MPI 0.550 3.91 4.97
Non-blocking MPI w/ Overlap 0.562 3.33 4.88

Table 4: FFT kernel xkcomm2 timings for methods (i) to (iv) as
noted in the text (Sec. 4.2). Number of variables (nv) is 5.

mediately byMPI WAIT, and (iv) non-blocking MPI with

overlap as described.

The trends suggested by the present timing data are

not well understood (and may have been contaminated

by some spurious degree of network contention). How-

ever, considering other routines (such as xkcomm1, kx-

comm1) the general picture seems to be non-blockingMPI

communication is mainly advantageous at small prob-

lems sizes and core counts but does not win at large prob-

lem sizes and core counts. One likely reason may be that

when running at large scales CPU times spent on FFT

and packing/unpacking are only a small fraction of time

taken by communication (which inherently scales with

core count less well). In other words, the potential of

gains from overlapping at these scales may be limited.

4.3 OVERLAP USING CO-ARRAY FORTRAN

The logic for overlapping as laid out in Table 3 can be

readily extended to Co-Array Fortran, provided the re-

mote addressing data exchange statements can be imple-

mented in a non-blocking manner. This is done using a

special directive !dir$ pgas defer sync followed by

a sync memory at an appropriate place. We have had an

opportunity to test this on dedicated boxes (see Sec. 5) at

the largest problem size of interest, namely 81923 resolu-

tion on 8192 XE nodes. However, at 5 variables, the non-

blocking CAF code with overlap takes 12.6 secs for its xk-

comm2 operations, which is longer than 9.0 seconds using

blocking CAF. Thus a preliminary conclusion is that no

clear benefits from overlap are obtained at this scale.

It is possible that the ratio between computation and

communication (within a 3D FFT) is inherently unfavor-

able to overlapping at the largest scales. However when

using CAF for data exchange part of the cost is spent on

copying between a regular array and a co-array. It will be

interesting to see, with substantial further effort, whether

this copying for one variable can be overlapped effec-

tively with data movement for another variable.

5 NETWORK CONTENTION AND DEDICATED BOXES

As mentioned in Sec. 1, we have experienced significant

performance variability due to network contention on

Blue Waters. This variability is generally more serious

at larger problem sizes and larger core counts. For ex-

ample in a series of production jobs at 81923 resolution

on 4k XE nodes using 16 cores per node, it was not un-

common to see 100% variability, i.e. a time step may take

about 25-30 secs to complete in one run but 50 seconds

or more in another. The magnitude of this variability

is comparable or greater than observed differences be-

tween different implementations (such as pure MPI ver-

sus Co-Arrays), therefore making comparisons between

different implementations difficult at this scale. As noted

in Sec. 3.2, in order to draw safer conclusions in assess-

ing the effects of various performance-enhancement fea-

tures in our codeswe generally run different implementa-

tions from the same job script, which at least ensures that

comparisons are based on the same network topology of

nodes running the code. However, even with these safe-

guards, significant slowdowns or penalties can still arise

if nodes assigned to the user job are physically far apart

within the Blue Waters node network, or as demand on

bandwidth from jobs by other users happen to fluctuate

strongly within the duration of our job. The impact of

these contention issues is also consistently traceable to

the communication costs according to a detailed analysis

of the benchmarking data that have obtained.

The best cure to the contention issues is apparently to

run on a dedicated partition of the system. This should

minimize (if not remove) contentionwith other jobs of the

system, and a partition can be configured with a topol-

ogy that also likely leads to the fastest communication

possible. By special assistance of the Blue Waters sys-

tem administrators we were able to test (in June 2013)

the production DNS code at 81923 on 8192 XE nodes, ar-

ranged in a sheet topology. We used single precision, with

a 32 × 8192 processor grid, second-order Runge Kutta

scheme, and the blocking Co-Array routines for commu-

nication. The elapsed wall time per step (based on the

slowest MPI task) was 15.4 secs for velocity field only,

and 26.9 secs with two scalars. These timings compare

very favorably with the best of all non-dedicated runs

conducted using the same parameters, which were 20.5

and 58.1 secs respectively. The impact of dedicated par-

titions is even greater when one considers that the per-

formance of non-dedicated runs often vary upwards sig-

nificantly: e.g. getting 35 secs and more instead of 20.5

secs.

6 SUMMARY AND OUTLOOK

In this document we have reported on the use of sev-

eral strategies to improve the performance of a major

pseudo-spectral turbulence simulation code on Blue Wa-

ters. The algorithmic requirements are closely tied to

three-dimensional Fast Fourier Transforms, which are

useful in various other fields in science and engineer-

ing. More importantly, the lessons learned are relevant to

communication-intensive domain science codes running

on large shared systems such as Blue Waters.

The methods we pursued perhaps can be generally

classified as those which allows the code to (i) perform

less communication or communicate more efficiently, (ii)

overlap communication with some computation, and

(iii) minimize variability and performance degradation

caused by network contention. For (i), cylindrical trunca-

tion exploiting aliasing error treatment and Fortran Co-

Arrays in the Cray Compiler Environment using remote

memory addressing have been found to be consistently

effective, the latter especially so for large problems. For

(ii), we have tested FFT kernels based on overlapping us-

ing OpenMP multithreading, non-blocking MPI collec-

tives, and non-blocking Co-Arrays, but have not been

able to demonstrate clear improvement. A likely reason

is that the ratio of times spent in computation to com-

munication is low at large core counts. However further

progress using Co-Arrays may be possible via further en-

hancements of the techniques currently used. For (iii),

tests at the size of our target science problem, namely

81923 grid points show that dedicated partitions have, as

expected, a highly favorable impact on the timings.

Together with avoidance of random performance

degradation regularly observed in un-dedicated runs, we

argue that use of dedicated partitions for the largest tar-

geted science problems is essentially vital for a rapid rate

of progress at the largest problem sizes of interest. While

frequent use of such partitions by reservation may lead

to some scheduling inconvenience for other users, a re-

duction in the level of mutual interference among jobs of

various sizes may also allow more science throughput on

the system overall.

ACKNOWLEDGMENTS

We gratefully acknowledge support from the National

Science Foundation (Office of Cyberinfrastructure and

the Fluid Dynamics Program). In particular, this work

is made possible through a PRAC award from NSF and

a NEIS-P2 subaward through the University of Illinois at

Urbana-Champaign. We are grateful to Dr. R.A Fiedler

of Cray Inc. for providing us with Co-Array Fortran rou-

tines and valuable advice on many other fronts. We also

thank several BlueWaters staff members (listed alphabet-

ically: G.H. Bauer, T.A. Cortese, S. Islam, J. Kim, J. Li) for

their help in the work reported in this document. Some

of the work was performed by PhD students K. Iyer and

D. Buaria at Georgia Tech.

REFERENCES

[1] K. R. Sreenivasan. Fluid turbulence. Rev. Mod. Phys.,

71:s383–s395, 1999.

[2] J. L. Lumley and A. M. Yaglom. A century of turbu-

lence. Flow Turb. Combust., 66:241–286, 2001.

[3] P. Moin and K. Mahesh. Direct numerical simula-

tion: A tool in turbulence research. Annu. Rev. Fluid

Mech., 30:539–578, 1998.

[4] M. Yokokawa, T. Itakura, A. Uno, T. Ishihara, and

Y. Kaneda. 16.4-tflops direct numerical simulation of

turbulence by a fourier spectral method on the earth

simulator. In Proceedings of the Supercomputing Con-

ference, Baltimore, November 2002.

[5] J. Jiménez. Computing high-Reynolds-number tur-

bulence: will simulations ever replace experiments?

J. Turb., 4:022, 2003.

[6] T. Ishihara, T. Gotoh, and Y. Kaneda. Study of high-

Reynolds number isotropic turbulence by direct nu-

merical simulation. Annu. Rev. Fluid Mech., 41:165–

180, 2009.

[7] P. K. Yeung, D. A. Donzis, and K. R. Sreenivasan.

Dissipation, enstrophy and pressure statistics in tur-

bulence simulations at high reynolds numbers. J.

Fluid Mech., 700:5–15, 2012.

[8] S. A. Orszag. Numerical simulation of incompress-

ible flows with simple boundaries. 1. galerkin (spec-

tral) representations. Stud. Appl. Math., 50:293–xxx,

1971.

[9] C. Canuto, M. Hussaini, A. Qarteroni, and T. Zang.

Sectral Methods in Fluid Dynamics. Springer, 1988.

[10] D. A. Donzis, P. K. Yeung, and D. Pekurovsky. Tur-

bulence simulations on o(104) processors. In Tera-

Grid 2008 Conference, Las Vegas, June 2008.

[11] D. Pekurovsky. P3dfft: A framework for parallel

computations of fourier transforms in three dimen-

sions. Siam J. of Scientific Computing, 34:C192–209,

2012.

[12] R. S. Rogallo. Numerical experiments in homoge-

neous turbulence. NASA TM 81315, NASA Ames

Research Center, Moffett Field, CA., 1981.

