
PE Workshop October 12-13, 2011

  Programming model and language support (MPI, PGAS,
OpenMP, SHMEM)

  Other interesting performance data

  Trace analysis and visualization

 Where to get help

  Example: analyzing the performance of an application

  A peak at GPU support

Oct 12-13, 2011 Cray Inc. Proprietary

  Load imbalance

•  Identifies computational code regions and synchronization calls that
could benefit most from load balance optimization (some processes
have less work than others, some are waiting longer on barriers, etc)

•  Estimates savings if corresponding section of code were balanced

•  MPI sync time (determines late arrivers to barriers)
•  MPI rank placement suggestions (maximize on-node communication)
•  Imbalance metrics (user functions, MPI functions, OpenMP threads)

Oct 12-13, 2011 Cray Inc. Proprietary

  Increasing system software and architecture complexity
•  Current trend in high end computing is to have systems with tens of

thousands of processors
  This is being accentuated with multi-core processors

  Applications have to be very well balanced In order to
perform at scale on these MPP systems
•  Efficient application scaling includes a balanced use of requested

computing resources

  Desire to minimize computing resource “waste”
•  Identify slower paths through code
•  Identify inefficient “stalls” within an application

Oct 12-13, 2011 Cray Inc. Proprietary

 Measure load imbalance in programs instrumented to trace
MPI functions to determine if MPI ranks arrive at collectives
together

  Separates potential load imbalance from data transfer

  Sync times reported by default if MPI functions traced

  If desired, PAT_RT_MPI_SYNC=0 deactivates this feature

Oct 12-13, 2011 Cray Inc. Proprietary

 Metric based on execution time
  It is dependent on the type of activity:

•  User functions
Imbalance time = Maximum time – Average time

•  Synchronization (Collective communication and barriers)
Imbalance time = Average time – Minimum time

  Identifies computational code regions and synchronization
calls that could benefit most from load balance optimization

  Estimates how much overall program time could be saved if
corresponding section of code had a perfect balance
•  Represents upper bound on “potential savings”
•  Assumes other processes are waiting, not doing useful work while

slowest member finishes

Oct 12-13, 2011 Cray Inc. Proprietary

  Represents % of resources available for parallelism that is
“wasted”

  Corresponds to % of time that rest of team is not engaged in
useful work on the given function

  Perfectly balanced code segment has imbalance of 0%

  Serial code segment has imbalance of 100%

Imbalance% =
Imbalance time

Max Time
X

N - 1
N

100 X

Oct 12-13, 2011 Cray Inc. Proprietary

Oct 12-13, 2011

-1, +1
Std Dev
marks	

Min, Avg, and Max
Values	

Cray Inc. Proprietary

  Profiles of a PGAS program can be created to show:
•  Top time consuming functions/line numbers in the code
•  Load imbalance information
•  Performance statistics attributed to user source by default
•  Can expose statistics by library as well

  To see underlying operations, such as wait time on barriers

  Data collection is based on methods used for MPI library
•  PGAS data is collected by default when using Automatic Profiling Analysis

(pat_build –O apa)
•  Predefined wrappers for runtime libraries (caf, upc, pgas) enable attribution of

samples or time to user source

  UPC and SHMEM heap tracking available
•  -g heap will track shared heap in addition to local heap

Oct 12-13, 2011 Cray Inc. Proprietary

Table 1: Profile by Function

 Samp % | Samp | Imb. | Imb. |Group

 | | Samp | Samp % | Function

 | | | | PE='HIDE'

 100.0% | 48 | -- | -- |Total

|--

| 95.8% | 46 | -- | -- |USER

||---

|| 83.3% | 40 | 1.00 | 3.3% |all2all

|| 6.2% | 3 | 0.50 | 22.2% |do_cksum

|| 2.1% | 1 | 1.00 | 66.7% |do_all2all

|| 2.1% | 1 | 0.50 | 66.7% |mpp_accum_long

|| 2.1% | 1 | 0.50 | 66.7% |mpp_alloc

||===

| 4.2% | 2 | -- | -- |ETC

||---

|| 4.2% | 2 | 0.50 | 33.3% |bzero

|==

Oct 12-13, 2011 Cray Inc. Proprietary

Table 2: Profile by Group, Function, and Line

 Samp % | Samp | Imb. | Imb. |Group

 | | Samp | Samp % | Function

 | | | | Source

 | | | | Line

 | | | | PE='HIDE'

 100.0% | 48 | -- | -- |Total

|--

| 95.8% | 46 | -- | -- |USER

||---

|| 83.3% | 40 | -- | -- |all2all

3| | | | | mpp_bench.c

4| | | | | line.298

|| 6.2% | 3 | -- | -- |do_cksum

3| | | | | mpp_bench.c

||||---

4||| 2.1% | 1 | 0.25 | 33.3% |line.315

4||| 4.2% | 2 | 0.25 | 16.7% |line.316

||||===

Oct 12-13, 2011 Cray Inc. Proprietary

Table 1: Profile by Function and Callers, with Line Numbers

 Samp % | Samp |Group

 | | Function

 | | Caller

 | | PE='HIDE’

 100.0% | 47 |Total

|---------------------------

| 93.6% | 44 |ETC

||--------------------------

|| 85.1% | 40 |upc_memput

3| | | all2all:mpp_bench.c:line.298

4| | | do_all2all:mpp_bench.c:line.348

5| | | main:test_all2all.c:line.70

|| 4.3% | 2 |bzero

3| | | (N/A):(N/A):line.0

|| 2.1% | 1 |upc_all_alloc

3| | | mpp_alloc:mpp_bench.c:line.143

4| | | main:test_all2all.c:line.25

|| 2.1% | 1 |upc_all_reduceUL

3| | | mpp_accum_long:mpp_bench.c:line.185

4| | | do_cksum:mpp_bench.c:line.317

5| | | do_all2all:mpp_bench.c:line.341

6| | | main:test_all2all.c:line.70

||==========================

Oct 12-13, 2011 Cray Inc. Proprietary

 Measure overhead incurred entering and leaving
•  Parallel regions
•  Work-sharing constructs within parallel regions

  Show per-thread timings and other data

  Trace entry points automatically inserted by Cray and PGI

compilers
•  Provides per-thread information

  Can use sampling to get performance data without API (per
process view… no per-thread counters)
•  Run with OMP_NUM_THREADS=1 during sampling

Oct 12-13, 2011 Cray Inc. Proprietary

  Load imbalance calculated across all threads in all ranks for
mixed MPI/OpenMP programs
•  Can choose to see imbalance to each programming model separately

 We need to add tracing support for barriers (both implicit and
explicit)
•  Need support from compilers

  Data displayed by default in pat_report (no options needed)
•  Focus on where program is spending its time
•  Assumes all requested resources should be used

 Oct 12-13, 2011 Cray Inc. Proprietary

  profile_pe.th (default view)
•  Imbalance based on the set of all threads in the program

  profile_pe_th
•  Highlights imbalance across MPI ranks
•  Uses max for thread aggregation to avoid showing under-performers
•  Aggregated thread data merged into MPI rank data

  profile_th_pe
•  For each thread, show imbalance over MPI ranks
•  Example: Load imbalance shown where thread 4 in each MPI rank

didn’t get much work

Oct 12-13, 2011 Cray Inc. Proprietary

Oct 12-13, 2011

!
!
!
!
!
!
!
Table 1: Profile by Function Group and Function!
!
 Time % | Time |Imb. Time | Imb. | Calls |Group!
 | | | Time % | | Function!
 | | | | | PE.Thread='HIDE'!
!
 100.0% | 12.548996 | -- | -- | 7944.7 |Total!
|--!
| 97.8% | 12.277316 | -- | -- | 3371.8 |USER!
||---!
|| 35.6% | 4.473536 | 0.072259 | 1.6% | 498.0 |calc3_.LOOP@li.96!
|| 29.1% | 3.653288 | 0.070551 | 1.9% | 500.0 |calc2_.LOOP@li.74!
|| 28.3% | 3.545677 | 0.056303 | 1.6% | 500.0 |calc1_.LOOP@li.69!
. . .!
||===!
| 1.2% | 0.155028 | -- | -- | 1000.5 |MPI_SYNC!
||---!
|| 1.2% | 0.154899 | 0.674518 | 82.0% | 999.0 |mpi_barrier_(sync)!
|| 0.0% | 0.000129 | 0.000489 | 79.8% | 1.5 |mpi_reduce_(sync)!
||===!
| 0.7% | 0.082943 | -- | -- | 3197.2 |MPI!
||---!
|| 0.4% | 0.047471 | 0.158820 | 77.6% | 999.0 |mpi_barrier_!
|| 0.1% | 0.015157 | 0.295055 | 95.9% | 297.1 |mpi_waitall_!
. . .!
||===!
| 0.3% | 0.033683 | -- | -- | 374.5 |OMP!
||---!
|| 0.1% | 0.013098 | 0.078620 | 86.4% | 125.0 |calc2_.REGION@li.74(ovhd)!
|| 0.1% | 0.010298 | 0.052760 | 84.3% | 124.5 |calc3_.REGION@li.96(ovhd)!
|| 0.1% | 0.010287 | 0.068428 | 87.6% | 125.0 |calc1_.REGION@li.69(ovhd)!
||===!
| 0.0% | 0.000027 | 0.000128 | 83.0% | 0.8 |PTHREAD!
| | | | | | pthread_create!
|==!
!
!

OpenMP	
 overhead	
 is	
 normally	

small	
 and	
 is	
 filtered	
 out	
 on	
 the	

default	
 report	
 (<	
 0.5%).	
 When	

using	
 “–T”	
 the	
 filter	
 is	

deacFvated	
 	

OpenMP	
 Parallel	
 DOs	

<funcFon>.<region>@<line>	

automaFcally	
 instrumented	

Cray Inc. Proprietary

Oct 12-13, 2011

!
!
!
==!
USER / calc3_.LOOP@li.96!
--!
 Time% 37.3%!
 Time 6.826587 secs!
 Imb.Time 0.039858 secs!
 Imb.Time% 0.6%!
 Calls 72.9 /sec 498.0 calls!
 DATA_CACHE_REFILLS:!
 L2_MODIFIED:L2_OWNED:!
 L2_EXCLUSIVE:L2_SHARED 64.364M/sec 439531950 fills!
 DATA_CACHE_REFILLS_FROM_SYSTEM:!
 ALL 10.760M/sec 73477950 fills!
 PAPI_L1_DCM 64.973M/sec 443686857 misses!
 PAPI_L1_DCA 135.699M/sec 926662773 refs!
 User time (approx) 6.829 secs 15706256693 cycles 100.0%Time!
 Average Time per Call 0.013708 sec!
 CrayPat Overhead : Time 0.0%!
 D1 cache hit,miss ratios 52.1% hits 47.9% misses!
 D1 cache utilization (misses) 2.09 refs/miss 0.261 avg hits!
 D1 cache utilization (refills) 1.81 refs/refill 0.226 avg uses!
 D2 cache hit,miss ratio 85.7% hits 14.3% misses!
 D1+D2 cache hit,miss ratio 93.1% hits 6.9% misses!
 D1+D2 cache utilization 14.58 refs/miss 1.823 avg hits!
 System to D1 refill 10.760M/sec 73477950 lines!
 System to D1 bandwidth 656.738MB/sec 4702588826 bytes!
 D2 to D1 bandwidth 3928.490MB/sec 28130044826 bytes!
==!

Cray Inc. Proprietary

 When does it pay to add OpenMP to my MPI code?

• Add OpenMP when code is network bound

• Adding OpenMP to memory bound codes may aggravate
memory bandwidth issues, but you have more control
when optimizing for cache

•  Look at collective time, excluding sync time: this goes up
as network becomes a problem

•  Look at point-to-point wait times: if these go up, network
may be a problem

Oct 12-13, 2011 Cray Inc. Proprietary

 MPI rank placement with environment variable

 	

 	

 	

 	

 	

 	

 	

 	

0	

 1	

 2	

 3	

4	

 5	

 6	

 7	

  Distributed placement
  SMP style placement

 	

 	

 	

 	

 	

 	

 	

 	

0	

 2	

 4	

 6	

1	

 3	

 5	

 7	

 	

 	

 	

 	

 	

 	

 	

 	

  Folded rank placement

0	

 1	

 2	

 3	

7	

 6	

 5	

 4	

 	

 	

 	

 	

 	

 	

 	

 	

  User provided rank file

?	

 ?	

 ?	

 ?	

?	

 ?	

 ?	

 ?	

Oct 12-13, 2011 Cray Inc. Proprietary

  Analyze runtime performance data to identify grids in a
program to maximize on-node communication
•  Example: nearest neighbor exchange in 2 dimensions

  Sweep3d uses a 2-D grid for communication

  Determine whether or not a custom MPI rank order will
produce a significant performance benefit

  Grid detection is helpful for programs with significant point-to-
point communication

  Doesn’t interfere with MPI collective communication
optimizations

Oct 12-13, 2011 Cray Inc. Proprietary

  Tools produce a custom rank order if it’s beneficial based on
grid size, grid order and cost metric

  Summarized findings in report

  Available if MPI functions traced (-g mpi)

  Describe how to re-run with custom rank order

Oct 12-13, 2011 Cray Inc. Proprietary

MPI Grid Detection: There appears to be point-to-point MPI!

 communication in a 22 X 18 grid pattern. The 48.6% of the total!

 execution time spent in MPI functions might be reduced with a rank!

 order that maximizes communication between ranks on the same node.!

 The effect of several rank orders is estimated below.!

!

 A file named MPICH_RANK_ORDER.Custom was generated along with this!

 report and contains the Custom rank order from the following table.!

 This file also contains usage instructions and a table of!

 alternative rank orders.!

!

 Rank On-Node On-Node MPICH_RANK_REORDER_METHOD!

 Order Bytes/PE Bytes/PE%!

 of Total!

 Bytes/PE!

!

 Custom 7.80e+06 78.37% 3!

 SMP 5.59e+06 56.21% 1!

 Fold 2.59e+05 2.60% 2!

 RoundRobin 0.00e+00 0.00% 0!

Oct 12-13, 2011 Cray Inc. Proprietary

The 'Custom' rank order in this file targets nodes with multi-core
processors, based on Sent Msg Total Bytes collected for:

Program: /lus/nid00030/heidi/sweep3d/mod/sweep3d.mpi
Ap2 File: sweep3d.mpi+pat+27054-89t.ap2
Number PEs: 48
Max PEs/Node: 4

To use this file, make a copy named MPICH_RANK_ORDER, and set the
environment variable MPICH_RANK_REORDER_METHOD to 3 prior to
executing the program.

The following table lists rank order alternatives and the grid_order
command-line options that can be used to generate a new order.
…
Oct 12-13, 2011 Cray Inc. Proprietary

  Helps identify loops to move to optimize:
•  Loop timings approximate how much work exists within a loop
•  Trip counts can be used to help carve up loop on GPU

  Enabled with CCE –h profile_generate option

•  Should be done as separate experiment – compiler optimizations are
restricted with this feature

  Loop statistics reported by default in pat_report table

Oct 12-13, 2011 Cray Inc. Proprietary

  Load PrgEnv-cray software
  Load perftools software

  Compile AND link with –h profile_generate

  Instrument binary for tracing
•  pat_build –u my_program or
•  pat_build –w my_program

  Run application
  Create report with loop statistics

•  pat_report my_program.xf > loops_report

Oct 12-13, 2011 Cray Inc. Proprietary

Notes for table 2:

 Table option:

 -O loops

 …

 The Function value for each data item is the avg of the PE values.

 (To specify different aggregations, see: pat_help report options s1)

 This table shows only lines with Loop Incl Time / Total > 0.0095.

 (To set thresholds to zero, specify: -T)

Loop instrumentation can interfere with optimizations, so time

 reported here may not reflect time in a fully optimized program.

 Loop stats can safely be used in the compiler directives:

 !PGO$ loop_info est_trips(Avg) min_trips(Min) max_trips(Max)

 #pragma pgo loop_info est_trips(Avg) min_trips(Min) max_trips(Max)

 Explanation of Loop Notes (P=1 is highest priority, P=0 is lowest):

 novec (P=0.5): Loop not vectorized (see compiler messages for reason).

 sunwind (P=1): Loop could be vectorized and unwound.

 vector (P=0.1): Already a vector loop.

Oct 12-13, 2011

Profile	
 guided	

opFmizaFon	

feedback	
 for	

compiler	

Cray Inc. Proprietary

Table 2: Loop Stats from -hprofile_generate

 Loop |Loop Incl |Loop Incl | Loop | Loop | Loop |Function=/.LOOP\.

 Incl | Time | Time / | Hit | Trips | Notes | PE='HIDE'

 Time / | | Hit | | Avg | |

 Total | | | | | |

|---

| 24.6% | 0.057045 | 0.000570 | 100 | 64.1 | novec |calc2_.LOOP.0.li.614

| 24.0% | 0.055725 | 0.000009 | 6413 | 512.0 | vector |calc2_.LOOP.1.li.615

| 18.9% | 0.043875 | 0.000439 | 100 | 64.1 | novec |calc1_.LOOP.0.li.442

| 18.3% | 0.042549 | 0.000007 | 6413 | 512.0 | vector |calc1_.LOOP.1.li.443

| 17.1% | 0.039822 | 0.000406 | 98 | 64.1 | novec |calc3_.LOOP.0.li.787

| 16.7% | 0.038883 | 0.000006 | 6284 | 512.0 | vector |calc3_.LOOP.1.li.788

| 9.7% | 0.022493 | 0.000230 | 98 | 512.0 | vector |calc3_.LOOP.2.li.805

| 4.2% | 0.009837 | 0.000098 | 100 | 512.0 | vector |calc2_.LOOP.2.li.640

|===

Oct 12-13, 2011 Cray Inc. Proprietary

  blas Basic Linear Algebra subprograms
  CAF Co-Array Fortran (Cray CCE compiler only)
  HDF5 manages extremely large and complex data collections
  heap dynamic heap
  io includes stdio and sysio groups
  lapack Linear Algebra Package
  math ANSI math
  mpi MPI
  omp OpenMP API
  omp-rtl OpenMP runtime library (not supported on Catamount)
  pthreads POSIX threads (not supported on Catamount)
  shmem SHMEM
  sysio I/O system calls
  system system calls
  upc Unified Parallel C (Cray CCE compiler only)

For a full list, please see man pat_build

Oct 12-13, 2011 Cray Inc. Proprietary

Oct 12-13, 2011

heidi@kaibab:/lus/scratch/heidi> pat_report -O –h

pat_report: Help for -O option:
Available option values are in left column, a prefix can be
specified:
 ct -O calltree
 defaults <Tables that would appear by default.>
 heap -O heap_program,heap_hiwater,heap_leaks
 io -O read_stats,write_stats
 lb -O load_balance
 load_balance -O lb_program,lb_group,lb_function
 mpi -O mpi_callers

 D1_D2_observation Observation about Functions with low D1+D2
cache hit ratio
 D1_D2_util Functions with low D1+D2 cache hit ratio
 D1_observation Observation about Functions with low D1
cache hit ratio
 D1_util Functions with low D1 cache hit ratio
 TLB_observation Observation about Functions with low TLB
refs/miss
 TLB_util Functions with low TLB refs/miss

Cray Inc. Proprietary

  -g heap
•  calloc, cfree, malloc, free, malloc_trim, malloc_usable_size, mallopt,

memalign, posix_memalign, pvalloc, realloc, valloc

  -g heap
  -g sheap
  -g shmem

•  shfree, shfree_nb, shmalloc, shmalloc_nb, shrealloc

  -g upc (automatic with –O apa)
•  upc_alloc, upc_all_alloc, upc_all_free, uc_all_lock_alloc,

upc_all_lock_free, upc_free, upc_global_alloc, upc_global_lock_alloc,
upc_lock_free

Oct 12-13, 2011 Cray Inc. Proprietary

Oct 12-13, 2011

Notes for table 5:

 Table option:
 -O heap_hiwater
 Options implied by table option:
 -d am@,ub,ta,ua,tf,nf,ac,ab -b pe=[mmm]

 This table shows only lines with Tracked Heap HiWater MBytes > 0.

Table 5: Heap Stats during Main Program

 Tracked | Total | Total | Tracked | Tracked |PE[mmm]
 Heap | Allocs | Frees | Objects | MBytes |
 HiWater | | | Not | Not |
 MBytes | | | Freed | Freed |

 9.794 | 915 | 910 | 4 | 1.011 |Total
|---
| 9.943 | 1170 | 1103 | 68 | 1.046 |pe.0
| 9.909 | 715 | 712 | 3 | 1.010 |pe.22
| 9.446 | 1278 | 1275 | 3 | 1.010 |pe.43
|===

Cray Inc. Proprietary

  Only true function calls can be traced
•  Functions that are inlined by the compiler or that have local scope in a

compilation unit cannot be traced

  Enabled with pat_build –g, -u, -T or –w options

  Full trace (sequence of events) enabled by setting
PAT_RT_SUMMARY=0

Oct 12-13, 2011 Cray Inc. Proprietary

Oct 12-13, 2011 Cray Inc. Proprietary

Oct 12-13, 2011

User Functions, MPI
& SHMEM Line	

I/O Line	

Cray Inc. Proprietary

Oct 12-13, 2011 Cray Inc. Proprietary

Oct 12-13, 2011

Several environment variables are available to limit trace files
to a reasonable size:

  PAT_RT_CALLSTACK
•  Limit the depth to trace the call stack

  PAT_RT_HWPC
•  Avoid collecting hardware counters (unset)

  PAT_RT_RECORD_PE
•  Collect trace for a subset of the PEs

  PAT_RT_TRACE_FUNCTION_ARGS
•  Limit the number of function arguments to be traced

  PAT_RT_TRACE_FUNCTION_LIMITS
•  Avoid tracing indicated functions

  PAT_RT_TRACE_FUNCTION_MAX
•  Limit the maximum number of traces generated for all functions for a

single process

Cray Inc. Proprietary

  Software package information
•  Use avail, list or help parameters to module command
•  ‘module help perftools’ shows release notes

  Version (same for pat_build, pat_report, pat_help)

% pat_build –V
CrayPat/X: Version 5.2.3 Revision 8155 09/13/11 08:47:57

  Cray Apprentice2 version
•  Displayed in top menu bar when running GUI

Oct 12-13, 2011 Cray Inc. Proprietary

% module help perftools
----------- Module Specific Help for 'perftools/5.2.3' ---------
===
Perftools 5.2.3
==============
Release Date: September 15, 2011

Differences between CrayPat 5.2.2 release and 5.2.3 release
--
 General
 * PAPI library supports counters in NVIDIA GPUs
 * PAPI library available as dynamically shared object
 * All installed PerfTools executable binary files are dynamically linked
. . .

Purpose

. . .

Bugs Fixed

. . .
Known Problem(s)

. . .
Product and OS Dependencies:

 . . .
Documentation:

 See the following documents at http://docs.cray.com/
 Cray Performance Analysis Tools Release Overview and
 Installation Guide S-2474-52
 Using Cray Performance Analysis Tools S-2376-52

Oct 12-13, 2011 Cray Inc. Proprietary

  User guide
•  http://docs.cray.com

 Man pages

  To see list of reports that can be generated

 % pat_report –O –h

  Notes sections in text performance reports provide
information and suggest further options

Oct 12-13, 2011 Cray Inc. Proprietary

  Cray Apprentice2 panel help

  pat_help – interactive help on the Cray Performance toolset

  FAQ available through pat_help

Oct 12-13, 2011 Cray Inc. Proprietary

  intro_craypat(1)
•  Introduces the craypat performance tool

  pat_build(1)
•  Instrument a program for performance analysis

  pat_help(1)
•  Interactive online help utility

  pat_report(1)
•  Generate performance report in both text and for use with GUI

  hwpc(5)
•  describes predefined hardware performance counter groups

  intro_papi(3)
•  Lists PAPI event counters
•  Use papi_avail or papi_native_avail utilities to get list of events when

running on a specific architecture

Oct 12-13, 2011 Cray Inc. Proprietary

Oct 12-13, 2011 Cray Inc. Proprietary

Oct 12-13, 2011

CrayPat/X: Version 5.0 Revision 2631 (xf 2571) 05/29/09 14:54:00

Number of PEs (MPI ranks): 48
Number of Threads per PE: 1
Number of Cores per Processor: 4

Execution start time: Fri May 29 15:31:49 2009
System type and speed: x86_64 2200 MHz
Current path to data file:
 /lus/nid00008/homer/sweep3d/sweep3d.mpi+samp.rts.ap2 (RTS)‏

Notes:
 Sampling interval was 10000 microseconds (100.0/sec)‏
 BSD timer type was ITIMER_PROF

 Trace option suggestions have been generated into a separate file
 from the data in the next table. You can examine the file, edit
 it if desired, and use it to reinstrument the program like this:

 pat_build -O sweep3d.mpi+samp.rts.apa

Cray Inc. Proprietary

  Interactive by default, or use trailing '.' to just print a topic:

  Troubleshooting FAQ available

  Has counter and counter group information

% pat_help counters amd_fam15h groups

Oct 12-13, 2011 Cray Inc. Proprietary

Oct 12-13, 2011

 The top level CrayPat/X help topics are listed below.
 A good place to start is:

 overview

 If a topic has subtopics, they are displayed under the heading
 "Additional topics", as below. To view a subtopic, you need
 only enter as many initial letters as required to distinguish
 it from other items in the list. To see a table of contents
 including subtopics of those subtopics, etc., enter:

 toc

 To produce the full text corresponding to the table of contents,
 specify "all", but preferably in a non-interactive invocation:

 pat_help all . > all_pat_help
 pat_help report all . > all_report_help

 Additional topics:

 API execute
 balance experiment
 build first_example
 counters overview
 demos report
 environment run

pat_help (.=quit ,=back ^=up /=top ~=search)
=>

Cray Inc. Proprietary

Oct 12-13, 2011

pat_help (.=quit ,=back ^=up /=top ~=search)
=> FAQ
 Additional topics that may follow "FAQ":

 Application Runtime Miscellaneous
 Availability and Module Environment Processing Data with pat_report
 Building Applications Visualizing Data with Apprentice2
 Instrumenting with pat_build

pat_help FAQ (.=quit ,=back ^=up /=top ~=search)
=> I
 Additional topics that may follow ""Instrumenting with pat_build"":

 1. Can not access the file ...
 2. ERROR: Missing required ELF section 'link information' from the program 'FILE'.
 3. ERROR: Missing required ELF section 'string table' from the program '...'.
 4. FATAL: The link information was not found in the .note section of ...
 5. How can I find out the text size of functions?
 6. How can I list trace points from my instrumented binary?
 7. How can I lower the size of data files with pat_build?
 8. How can I NOT instrument some of my object file(s)?
 9. How do I get MPI rank order suggestions?
 10. How do I specify a directory containing object files?
 11. My error messaage is "xyz can not be traced because ... not writable"
 12. Problems with instrumented programs using both MPI and OpenMP?
 13. User sampling with compiler hooks present is not allowed
 14. WARNING: Entry point 'FUNCTION' can not be traced because it is a locally
 defined function
 15. WARNING: The function 'FUNCTION' can not be traced because a trace wrapper
 was not successfully created
 16. What is APA?
 17. Why am I getting an error with userTraceFunctions.c?
 18. Why does my binary take longer to run when using 'pat_build -u'?

pat_help FAQ "Instrumenting with pat_build"
(.=quit ,=back ^=up /=top ~=search) =>

Cray Inc. Proprietary

  Advantages of Cray performance tools:
•  Scaling (running big jobs with a large number of GPUs)

  Results summarized and consolidated in one place. With the CUDA
profiler, the user will have to sift through a log file per GPU to look at
statistics.

•  Statistics for the whole application
  Performance statistics mapped back to the user source by line number.
  Performance statistics grouped by OpenMP accelerator directive
  Single report can include statistics for both the host and the accelerator.

The CUDA profiler will only give you the GPU statistics. You'll have to use
something else to collect information about the X86 code.

•  Single tool for NVIDIA and AMD performance analysis

  The user doesn't have to learn another tool when he or she runs an
application on a system with AMD GPUs. The CUDA profiler won't work
on AMD.

Oct 12-13, 2011 Cray Inc. Proprietary

  Performance statistics
•  Includes accelerator time, host time, and amount of data copied to/

from the accelerator.

  Kernel level statistics
•  Includes stats about grid size, block size, and occupancy. We are

looking into ways to include stats on shared memory and local
memory usage (part of memory footprint information).

  Accelerator hardware counters
•  Hardware counters on the accelerator itself. On Nvidia Fermi GPUs,

there are about 50 available counters.

Oct 12-13, 2011 Cray Inc. Proprietary

  Running MPI only on a node will not work well
•  Too much memory used, even if on-node shared communication is

available
•  As the number of MPI ranks increases, more off-node communication

can result, creating a network injection issue

  Focus on where MPI starts leveling off

  Address by adding additional levels of parallelism, reducing
MPI ranks per node
•  MPI -> MPI + OpenMP
•  MPI + OpenMP -> MPI + OpenMP GPU extensions

Oct 12-13, 2011 Cray Inc. Proprietary

 Maximize on-node communication if MPI point-to-point
communication is dominant in the program
•  Auto-grid detection and placement suggestions

  Determine where to add additional levels of parallelism
•  Find top time consuming loops with enough work for GPU with loop

statistics

  Do parallel analysis and restructuring on targeted high level
loops
•  Reveal scoping assistance

Oct 12-13, 2011 Cray Inc. Proprietary

  Add parallel directives and acceleration extensions
•  OpenMP extensions (Reveal directive generation assistance)

  Run on X86 + GPU and get performance feedback
•  Automatic profiling analysis

  Optimize for data locality and copies to the GPU
•  Cray performance tools accelerator statistics

  Optimize kernel on GPU
•  Cray performance tools accelerator statistics

  Optimize core performance on CPU
•  Automatic profiling analysis with CPU HW counter threshold feedback

 Oct 12-13, 2011 Cray Inc. Proprietary

!

Table 1: Profile by Function Group and Function!

!

 Time% | Time | Imb. | Imb. | Calls |Group !

 | | Time | Time% | | Function !

 | | | | | PE=HIDE !

 | | | | | Thread=HIDE !

!

 100.0% | 18.113521 | -- | -- | 6.0 |Total!

|--!

| 100.0% | 18.113443 | -- | -- | 5.0 |USER!

||---!

|| 90.6% | 18.113000 | 0.000000 | 0.0% | 1.0 |acc_sample_.ACC_DATA_REGION@li.23!

|| 9.4% | 0.000443 | 0.000000 | 0.0% | 1.0 |acc_sample_.ACC_REGION@li.24!

||===!

| 0.0% | 0.000078 | 0.000000 | 0.0% | 1.0 |ETC!

||---!

| 0.0% | 0.000078 | 0.000000 | 0.0% | 1.0 | exit!

|==!

Oct 12-13, 2011 Cray Inc. Proprietary

!

!

Table 2: Time and Bytes Transferred for Accelerator Regions!

!

 Host | Host | Acc | Acc Copy | Acc Copy | Calls |Calltree !

 Time% | Time | Time | In | Out | |!

 | | | (MBytes) | (MBytes) | |!

 100.0% | 18.113 | 18.112 | 209.808 | 209.808 | 4 |Total!

|--!

| 100.0% | 18.113 | 18.112 | 209.808 | 209.808 | 4 |acc_sample_!

| | | | | | | acc_sample_.ACC_DATA_REGION@li.23!

|||--!

3|| 90.6% | 16.418 | --- | --- | --- | 1 |sync!

3|| 9.4% | 1.695 | 1.695 | 209.808 | 209.808 | 2 |transfer!

3|| 0.0% | 0.000 | 16.418 | 0.000 | 0.000 | 1 |acc_sample_.ACC_REGION@li.24!

4|| | | | | | | async_kernel!

|==!

Oct 12-13, 2011 Cray Inc. Proprietary

New code restructuring and analysis assistant…

  Presents annotated source code with compiler optimization

information (“loopmark on wheels”)

  Offers source code navigation based on performance data
collected through CrayPat

  Provides infrastructure for user to investigate high level
looping structures for parallelization

  Highlights loops that could not be optimized

  Presents feedback on critical dependencies that prevent
optimizations

Oct 12-13, 2011 Cray Inc. Proprietary

Oct 12-13, 2011

Compiler	

feedback	

Compiler	

feedback	

Performance	

feedback	

Cray Inc. Proprietary

Oct 12-13, 2011 Cray Inc. Proprietary

Oct 12-13, 2011 Cray Inc. Proprietary

High Bridge PE Workshop October 12-13, 2011

