
BW	Webinar	‘18

Charm++ and Adaptive MPI

5/30/18 �1

BW	Webinar	‘18

Challenges in Parallel Programming

5/30/18 �2

BW	Webinar	‘18

Challenges in Parallel Programming
• Applications are getting more sophisticated

– Adaptive refinement
– Multi-scale, multi-module, multi-physics
– E.g. load imbalance emerges as a huge problem for some apps

5/30/18 �2

BW	Webinar	‘18

Challenges in Parallel Programming
• Applications are getting more sophisticated

– Adaptive refinement
– Multi-scale, multi-module, multi-physics
– E.g. load imbalance emerges as a huge problem for some apps

• Exacerbated by strong scaling needs from apps
– Strong scaling: run an application with same input data on more processors, and get

better speedups
– Weak scaling: larger datasets on more processors in the same time

5/30/18 �2

BW	Webinar	‘18

Challenges in Parallel Programming
• Applications are getting more sophisticated

– Adaptive refinement
– Multi-scale, multi-module, multi-physics
– E.g. load imbalance emerges as a huge problem for some apps

• Exacerbated by strong scaling needs from apps
– Strong scaling: run an application with same input data on more processors, and get

better speedups
– Weak scaling: larger datasets on more processors in the same time

• Hardware variability
– Static/dynamic
– Heterogeneity: processor types, process variation, etc.
– Power/Temperature/Energy
– Component failure

5/30/18 �2

BW	Webinar	‘18

Our View
• To deal with these challenges, we must seek:

– Not full automation
– Not full burden on app-developers
– But: a good division of labor between the system and app developers

• Programmer: what to do in parallel, System: where,when

• Develop language driven by needs of real applications
– Avoid “platonic” pursuit of “beautiful” ideas
– Co-developed with NAMD, ChaNGa, OpenAtom,..

• Pragmatic focus
– Ground-up development, portability,
– accessibility for a broad user base

5/30/18 �3

BW	Webinar	‘18

What is Charm++?

5/30/18 �4

BW	Webinar	‘18

What is Charm++?

• Charm++ is a generalized approach to writing parallel programs
– An alternative to the likes of MPI, UPC, GA etc.
– But not to sequential languages such as C, C++, and Fortran

5/30/18 �4

BW	Webinar	‘18

What is Charm++?

• Charm++ is a generalized approach to writing parallel programs
– An alternative to the likes of MPI, UPC, GA etc.
– But not to sequential languages such as C, C++, and Fortran

• Represents:
– The style of writing parallel programs

– The runtime system
– And the entire ecosystem that surrounds it

5/30/18 �4

BW	Webinar	‘18

What is Charm++?

• Charm++ is a generalized approach to writing parallel programs
– An alternative to the likes of MPI, UPC, GA etc.
– But not to sequential languages such as C, C++, and Fortran

• Represents:
– The style of writing parallel programs

– The runtime system
– And the entire ecosystem that surrounds it

• Three design principles:
– Overdecomposition, Migratability, Asynchrony

5/30/18 �4

BW	Webinar	‘18

Overdecomposition

• Decompose the work units & data units into many more
pieces than execution units
– Cores/Nodes/…

• Not so hard: we do decomposition anyway

5/30/18 �5

BW	Webinar	‘18

Migratability

• Allow these work and data units to be migratable at runtime
– i.e. the programmer or runtime can move them

• Consequences for the application developer
– Communication must now be addressed to logical units with global

names, not to physical processors
– But this is a good thing

• Consequences for RTS
– Must keep track of where each unit is
– Naming and location management

5/30/18 �6

BW	Webinar	‘18

Asynchrony: Message-Driven Execution
• With over-decomposition and migratability:

– You have multiple units on each processor
– They address each other via logical names

• Need for scheduling:
– What sequence should the work units execute in?
– One answer: let the programmer sequence them

• Seen in current codes, e.g. some AMR frameworks

– Message-driven execution:
• Let the work-unit that happens to have data (“message”) available for it execute next
• Let the RTS select among ready work units
• Programmer should not specify what executes next, but can influence it via priorities

5/30/18 �7

BW	Webinar	‘18

Realization of This Model in Charm++
• Overdecomposed entities: chares

5/30/18 �8

BW	Webinar	‘18

Realization of This Model in Charm++
• Overdecomposed entities: chares

– Chares are C++ objects

5/30/18 �8

BW	Webinar	‘18

Realization of This Model in Charm++
• Overdecomposed entities: chares

– Chares are C++ objects
– With methods designated as “entry” methods

• Which can be invoked asynchronously by remote chares

5/30/18 �8

BW	Webinar	‘18

Realization of This Model in Charm++
• Overdecomposed entities: chares

– Chares are C++ objects
– With methods designated as “entry” methods

• Which can be invoked asynchronously by remote chares

– Chares are organized into indexed collections
• Each collection may have its own indexing scheme

– 1D, ..., 6D
– Sparse
– Bitvector or string as an index

5/30/18 �8

BW	Webinar	‘18

Realization of This Model in Charm++
• Overdecomposed entities: chares

– Chares are C++ objects
– With methods designated as “entry” methods

• Which can be invoked asynchronously by remote chares

– Chares are organized into indexed collections
• Each collection may have its own indexing scheme

– 1D, ..., 6D
– Sparse
– Bitvector or string as an index

– Chares communicate via asynchronous method invocations
• A[i].foo(…);

– A is the name of a collection, i is the index of the particular chare.

5/30/18 �8

BW	Webinar	‘185/30/18 �9

BW	Webinar	‘18

Global	Object	Space

5/30/18 �9

BW	Webinar	‘18

Global	Object	Space

Processor	3Processor	2

Processor	1Processor	0

5/30/18 �9

BW	Webinar	‘18

Global	Object	Space

Processor	3Processor	2

Processor	1Processor	0

Scheduler

Message	Queue

Scheduler

Message	Queue

Scheduler

Message	Queue

Scheduler

Message	Queue
5/30/18 �9

BW	Webinar	‘18

Global	Object	Space

Processor	3Processor	2

Processor	1Processor	0

Scheduler

Message	Queue

Scheduler

Message	Queue

Scheduler

Message	Queue

Scheduler

Message	Queue
5/30/18 �9

BW	Webinar	‘18

Global	Object	Space

Processor	3Processor	2

Processor	1Processor	0

Scheduler

Message	Queue

Scheduler

Message	Queue

Scheduler

Message	Queue

Scheduler

Message	Queue
5/30/18 �9

BW	Webinar	‘18

Message-driven Execution

5/30/18 �10

Processor	1

Scheduler

Message	Queue

Processor	0

Scheduler

Message	Queue

BW	Webinar	‘18

Message-driven Execution

5/30/18 �10

Processor	1

Scheduler

Message	Queue

Processor	0

Scheduler

Message	Queue

A[23].foo(…)

BW	Webinar	‘18

Message-driven Execution

5/30/18 �10

Processor	1

Scheduler

Message	Queue

Processor	0

Scheduler

Message	Queue

A[23].foo(…)

BW	Webinar	‘18

Message-driven Execution

5/30/18 �10

Processor	1

Scheduler

Message	Queue

Processor	0

Scheduler

Message	Queue

A[23].foo(…)

BW	Webinar	‘18

Message-driven Execution

5/30/18 �10

Processor	1

Scheduler

Message	Queue

Processor	0

Scheduler

Message	Queue

A[23].foo(…)

BW	Webinar	‘18

Message-driven Execution

5/30/18 �10

Processor	1

Scheduler

Message	Queue

Processor	0

Scheduler

Message	Queue

A[23].foo(…)

BW	Webinar	‘18

Message-driven Execution

5/30/18 �10

Processor	1

Scheduler

Message	Queue

Processor	0

Scheduler

Message	Queue

A[23].foo(…)

BW	Webinar	‘18

Processor	2

Scheduler

Message	Queue

Processor	1

Scheduler

Message	Queue

Processor	0

Scheduler

Message	Queue

Processor	3

Scheduler

Message	Queue
5/30/18 �11

BW	Webinar	‘18

Processor	2

Scheduler

Message	Queue

Processor	1

Scheduler

Message	Queue

Processor	0

Scheduler

Message	Queue

Processor	3

Scheduler

Message	Queue
5/30/18 �12

BW	Webinar	‘18

Processor	2

Scheduler

Message	Queue

Processor	1

Scheduler

Message	Queue

Processor	0

Scheduler

Message	Queue

Processor	3

Scheduler

Message	Queue
5/30/18 �12

BW	Webinar	‘18

Processor	2

Scheduler

Message	Queue

Processor	1

Scheduler

Message	Queue

Processor	0

Scheduler

Message	Queue

Processor	3

Scheduler

Message	Queue
5/30/18 �13

BW	Webinar	‘18

Processor	2

Scheduler

Message	Queue

Processor	1

Scheduler

Message	Queue

Processor	0

Scheduler

Message	Queue

Processor	3

Scheduler

Message	Queue
5/30/18 �13

BW	Webinar	‘18

Empowering the RTS

5/30/18 �14

Asynchrony Overdecomposition Migratability

BW	Webinar	‘18

Empowering the RTS

5/30/18 �14

Asynchrony Overdecomposition Migratability

Adaptive	
Runtime	System

Introspection Adaptivity

BW	Webinar	‘18

Empowering the RTS

• The Adaptive RTS can:
– Dynamically balance loads
– Optimize communication:

• Spread over time, async collectives
– Automatic latency tolerance
– Prefetch data with almost perfect predictability

5/30/18 �14

Asynchrony Overdecomposition Migratability

Adaptive	
Runtime	System

Introspection Adaptivity

BW	Webinar	‘18

Charm++ and CSE Applications

5/30/18 �15

BW	Webinar	‘18

Charm++ and CSE Applications

5/30/18 �15

Enabling	CS	technology	of	parallel	objects	and	intelligent	runtime	
systems	has	led	to	several	CSE	collaborative	applications

BW	Webinar	‘18

Charm++ and CSE Applications

5/30/18 �15

Enabling	CS	technology	of	parallel	objects	and	intelligent	runtime	
systems	has	led	to	several	CSE	collaborative	applications

Well-known	Biophysics	
Molecular	Simulation	App		

Gordon	Bell	Award,	2002

Computational	
Astronomy

Synergy
Nano-Materials

BW	Webinar	‘18

Summary: What is Charm++?
• Charm++ is a way of parallel programming
• It is based on:

– Objects
– Overdecomposition
– Asynchrony

• Asynchronous method invocations

– Migratability
– Adaptive runtime system

• It has been co-developed synergistically with multiple CSE applications

5/30/18 �16

BW Webinar ‘18

Grainsize
• Charm++ philosophy:

– Let the programmer decompose their work and data into coarse-grained
entities

• It is important to understand what I mean by coarse-grained entities
– You don’t write sequential programs that some system will auto-decompose
– You don’t write programs when there is one object for each float
– You consciously choose a grainsize, but choose it independently of the

number of processors
• Or parameterize it, so you can tune later

5/30/18 �17

BW Webinar ‘185/30/18 �18

Decomposition into 16 chunks (left) and 128 chunks, 8 for each PE (right). The
middle area contains cohesive elements. Both decompositions obtained using
Metis. Pictures: S. Breitenfeld, and P. Geubelle

Crack Propagation
This is 2D, circa 2002...

but shows overdecomposition for unstructured meshes

BW Webinar ‘185/30/18 �19

Working definition of grainsize:
 amount of computation per remote interaction

BW Webinar ‘185/30/18 �19

Working definition of grainsize:
 amount of computation per remote interaction

BW Webinar ‘185/30/18 �19

Working definition of grainsize:
 amount of computation per remote interaction

Choose grainsize to be just large
enough to amortize the overhead

BW Webinar ‘18

Grainsize in a common setting

5/30/18 �20

2 MB/chare,
256 objects per core

number of points per chare

BW Webinar ‘18

Grainsize: Weather Forecasting in BRAMS

5/30/18 �21

• BRAMS: Brazillian weather code (based on RAMS)
• AMPI version (Eduardo Rodrigues, with Mendes, J. Panetta, ..)

Instead of using 64 work units on 64 cores, used 1024 on 64

BW Webinar ‘18

Grainsize: Weather Forecasting in BRAMS

5/30/18 �21

• BRAMS: Brazillian weather code (based on RAMS)
• AMPI version (Eduardo Rodrigues, with Mendes, J. Panetta, ..)

Instead of using 64 work units on 64 cores, used 1024 on 64

BW Webinar ‘18

Grainsize: Weather Forecasting in BRAMS

5/30/18 �21

• BRAMS: Brazillian weather code (based on RAMS)
• AMPI version (Eduardo Rodrigues, with Mendes, J. Panetta, ..)

Instead of using 64 work units on 64 cores, used 1024 on 64

BW Webinar ‘18

Baseline: 64 Objects

5/30/18 �22

Profile of Usage for Processors 0-63
Time per Step: 46s

Us
ag

e
Pe

rc
en

t (
%)

0

25

50

75

100

PE

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 Avg

BW Webinar ‘18

Overdecomposition: 1024 Objects

5/30/18 �23

Profile of Usage for Processors 0-63
Time per Step: 33s

Us
ag

e
Pe

rc
en

t (
%)

0

25

50

75

100

PE

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 Avg

Benefits from communication/
computation overlap

BW Webinar ‘18

With Load Balancing: 1024 objects

5/30/18 �24

Usage Profile for Processors 0-63
Time per Step: 27s

Us
ag

e
Pe

rc
en

t (
%)

80

85

90

95

100

PE

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 Avg

BW Webinar ‘18

With Load Balancing: 1024 objects

5/30/18 �24

Usage Profile for Processors 0-63
Time per Step: 27s

Us
ag

e
Pe

rc
en

t (
%)

80

85

90

95

100

PE

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 Avg

No overdecomp (64 threads) 46 sec

+ Overdecomposition (1024 threads) 33 sec

+ Load balancing (1024 threads) 27 sec

BW	Webinar	‘18

Message-driven	execution

Migratability

Introspective	and	adaptive	
runtime	system

Scalable	tools Automatic	overlap	of	communication	
and	computation	

Emulation	for	
performance	prediction

Fault	tolerance

Dynamic	load	balancing	(topology-
aware,	scalable)

Temperature/power/energy	
optimizations

Charm++ Benefits

5/30/18 �25

Perfect	prefetch

Compositionality

Overdecomposition

BW	Webinar	‘18

Locality and Prefetch

5/30/18 �26

Processor	1

Scheduler

Message	Queue

BW	Webinar	‘18

Locality and Prefetch

• Objects connote and promote locality

5/30/18 �26

Processor	1

Scheduler

Message	Queue

BW	Webinar	‘18

Locality and Prefetch

• Objects connote and promote locality
• Message-driven execution

– A strong principle of prediction for data and code use
– Much stronger than principle of locality

• Can use to scale memory wall:
• Prefetching of needed data:

– Into scratchpad memories, for example

5/30/18 �26

Processor	1

Scheduler

Message	Queue

BW	Webinar	‘18

Impact on Communication

• Current use of communication network:
– Compute-communicate cycles in typical MPI apps
– The network is used for a fraction of time

• And is on the critical path

• Current communication networks are over-engineered by
necessity

5/30/18 �27

P1

P2

BSP	based	application

BW	Webinar	‘18

Impact on Communication

• With overdecomposition:
– Communication is spread over an iteration
– Adaptive overlap of communication and computation

5/30/18 �28

P1

P2

Overdecomposition	enables	overlap

BW Webinar ‘18

Communication Data from Chombo

�29

Chombo with
reductions

Work by Phil Miller

5/30/18

BW Webinar ‘18

Communication Data from Chombo

�29

Chombo with
reductions

Chombo on
Charm

(experimental)

Work by Phil Miller

5/30/18

BW	Webinar	‘18

Decomposition Challenges

• Current method is to decompose to processors
– This has many problems
– Deciding which processor does what work in detail is difficult at

large scale

• Decomposition should be independent of number of
processors – enabled by object based decomposition

• Let runtime system (RTS) assign objects to available
resources adaptively

5/30/18 �30

BW	Webinar	‘18

Decomposition Independent of numCores

5/30/18 �31

Solid

Fluid

Solid

Fluid

Solid

Fluid
. . .

1 2 P

BW	Webinar	‘18

Decomposition Independent of numCores
• Rocket simulation example under traditional MPI

5/30/18 �31

Solid

Fluid

Solid

Fluid

Solid

Fluid
. . .

1 2 P

BW	Webinar	‘18

Decomposition Independent of numCores
• Rocket simulation example under traditional MPI

• With migratable-objects:

– Benefit: load balance, communication optimizations, modularity

5/30/18 �31

Solid

Fluid

Solid

Fluid

Solid

Fluid
. . .

1 2 P

Solid1

Fluid1

Solid2

Fluid2

Solidn

Fluidm
. . .

Solid3
. . .

BW	Webinar	‘18

Adaptive MPI

5/30/18 �32

BW	Webinar	‘18

What is Adaptive MPI?

�335/30/18

BW	Webinar	‘18

What is Adaptive MPI?

• AMPI is an MPI implementation on top of Charm++’s runtime
system
– Enables Charm++’s dynamic features for pre-existing MPI codes

�335/30/18

BW	Webinar	‘18

Process Virtualization

�345/30/18

BW	Webinar	‘18

Process Virtualization
• AMPI virtualizes MPI “ranks”, implementing them as migratable user-

level threads rather than OS processes
– Benefits:

• Communication/computation overlap

• Cache benefits to smaller working sets

• Dynamic load balancing
• Lower latency messaging within a process

– Disadvantages:
• Global/static variables are shared by all threads in an OS process scope

– AMPI provides support for automating this at compile/run-time
– Ongoing work to fully automate

�345/30/18

BW	Webinar	‘18

Dynamic Load Balancing

�355/30/18

BW	Webinar	‘18

Dynamic Load Balancing

• Isomalloc memory allocator
– No need for the user to explicitly write

de/serialization (PUP) routines
– Memory allocator migrates all heap data

and stack transparently
– Works on all 64-bit platforms except BGQ

& Windows
�355/30/18

BW	Webinar	‘18

Dynamic Load Balancing

• Isomalloc memory allocator
– No need for the user to explicitly write

de/serialization (PUP) routines
– Memory allocator migrates all heap data

and stack transparently
– Works on all 64-bit platforms except BGQ

& Windows
�35

• AMPI ranks are migratable across address spaces at runtime
– Add a call to AMPI_Migrate(MPI_Info) in the application’s main

iterative loop

5/30/18

BW	Webinar	‘18

Fault Tolerance

�365/30/18

BW	Webinar	‘18

Fault Tolerance
• AMPI ranks can be migrated to persistent storage or in remote

memories for fault tolerance
– Storage can be Disk, SSD, NVRAM, etc.

�365/30/18

BW	Webinar	‘18

Fault Tolerance
• AMPI ranks can be migrated to persistent storage or in remote

memories for fault tolerance
– Storage can be Disk, SSD, NVRAM, etc.

• The runtime uses a scalable fault detection algorithm and restarts
automatically on a failure

– Restart is online, within the same job

�365/30/18

BW	Webinar	‘18

Fault Tolerance
• AMPI ranks can be migrated to persistent storage or in remote

memories for fault tolerance
– Storage can be Disk, SSD, NVRAM, etc.

• The runtime uses a scalable fault detection algorithm and restarts
automatically on a failure

– Restart is online, within the same job

• Checkpointing strategy is specified by passing a different MPI_Info to
AMPI_Migrate()

�365/30/18

BW	Webinar	‘18

Communication Optimizations

�375/30/18

BW	Webinar	‘18

Communication Optimizations

• Along with overlapping communication, AMPI optimizes for
communication locality:
– Within a core, within a process, within a host, etc.
– Communication-aware load balancers can maximize locality

�375/30/18

BW	Webinar	‘18

Communication Optimizations

�385/30/18

BW	Webinar	‘18

Communication Optimizations

• AMPI outperforms process-based MPIs for messages within a
process
– All messaging is done in user-space: no kernel involvement

• Below: OSU MPI Benchmarks on Quartz, an Intel Omni-Path cluster at LLNL

�385/30/18

BW	Webinar	‘18

Communication Optimizations

�395/30/18

BW	Webinar	‘18

Communication Optimizations

• AMPI outperforms process-based MPIs for messages within a
process
– Utilize the full memory bandwidth on a node for messaging

�395/30/18

BW	Webinar	‘18

Compiling & Running AMPI Programs

�405/30/18

BW	Webinar	‘18

Compiling & Running AMPI Programs

• To compile an AMPI program:
– charm/bin/ampicc –o pgm pgm.o
– For migratability, link with: -memory isomalloc
– For LB strategies, link with: –module CommonLBs

�405/30/18

BW	Webinar	‘18

Compiling & Running AMPI Programs

• To compile an AMPI program:
– charm/bin/ampicc –o pgm pgm.o
– For migratability, link with: -memory isomalloc
– For LB strategies, link with: –module CommonLBs

• To run an AMPI job, specify the # of virtual processes (+vp)
– ./charmrun +p 1024 ./pgm
– ./charmrun +p 1024 ./pgm +vp 16384
– ./charmrun +p 1024 ./pgm +vp 16384 +balancer RefineLB

�405/30/18

BW	Webinar	‘18

Case Study

�415/30/18

BW	Webinar	‘18

Case Study

• LULESH proxy-application (LLNL)
– Shock hydrodynamics on an unstructured mesh
– With artificial load imbalance included to test runtimes

�415/30/18

BW	Webinar	‘18

Case Study

• LULESH proxy-application (LLNL)
– Shock hydrodynamics on an unstructured mesh
– With artificial load imbalance included to test runtimes

• No mutable global/static variables: can run on AMPI as is
1. Replace mpicc with ampicc
2. Link with “-module CommonLBs –memory isomalloc”
3. Run with # of virtual processes and a load balancing strategy:

• ./charmrun +p 2048 ./lulesh2.0 +vp 16384 +balancer GreedyLB

�415/30/18

BW	Webinar	‘18

LULESH: Without Virtualization & LB

�425/30/18

BW	Webinar	‘18

LULESH: Without Virtualization & LB
• Load imbalance appears during pt2pt messaging and in

MPI_Allreduce each timestep

�425/30/18

BW	Webinar	‘18

LULESH: Without Virtualization & LB

�435/30/18

BW	Webinar	‘18

LULESH: Without Virtualization & LB
• Communication/computation cycles mean the network is underutilized most

of the time

�435/30/18

BW	Webinar	‘18

LULESH: With 8x Virtualization & LB

�445/30/18

= GreedyLB

BW	Webinar	‘18

LULESH: With 8x Virtualization & LB
• Most of the communication time is overlapped by computation after load

balancing

�445/30/18

= GreedyLB

BW	Webinar	‘18

LULESH: With 8x Virtualization & LB

�455/30/18

BW	Webinar	‘18

LULESH: With 8x Virtualization & LB

• The communication of each virtual rank is
overlapped with the computation of others
scheduled on the same core

�455/30/18

BW	Webinar	‘18

LULESH: With 8x Virtualization & LB

• The communication of each virtual rank is
overlapped with the computation of others
scheduled on the same core

�45

– Projections allows viewing all virtual ranks on a PE, not only what
is currently scheduled on one

• In Projections Timeline, select: View -> Show Nested Bracketed User Events

5/30/18

BW	Webinar	‘18

LULESH: With 8x Virtualization & LB

�465/30/18

BW	Webinar	‘18

LULESH: With 8x Virtualization & LB
• Communication is spread over the whole timestep

– Peak network bandwidth used is reduced by 3x

�465/30/18

BW	Webinar	‘18

AMPI Summary

�475/30/18

BW	Webinar	‘18

AMPI Summary

• AMPI provides the dynamic RTS support of Charm++ with the
familiar API of MPI
– Communication optimizations
– Dynamic load balancing
– Automatic fault tolerance
– Checkpoint/restart
– OpenMP runtime integration

�475/30/18

BW	Webinar	‘18

AMPI Summary

• AMPI provides the dynamic RTS support of Charm++ with the
familiar API of MPI
– Communication optimizations
– Dynamic load balancing
– Automatic fault tolerance
– Checkpoint/restart
– OpenMP runtime integration

�475/30/18

BW	Webinar	‘18

AMPI Summary

• AMPI provides the dynamic RTS support of Charm++ with the
familiar API of MPI
– Communication optimizations
– Dynamic load balancing
– Automatic fault tolerance
– Checkpoint/restart
– OpenMP runtime integration

• See the AMPI Manual for more info.

�475/30/18

BW	Webinar	‘18

Hello World with Chares

5/30/18 �48

hello.cpp
#include	“hello.decl.h”	

class	Main	:	public	CBase_Main	{		
		public:	Main(CkArgMsg∗	m)	{	
				CProxy_Singleton::ckNew();		
		};		
};	
class	Singleton	:	public	CBase_Singleton	{		
		public:	Singleton()	{	
				ckout	<<	“Hello	World!”	<<	endl;		
				CkExit();	
		};		
};	
#include	“hello.def.h”

BW	Webinar	‘18

Hello World with Chares

5/30/18 �48

hello.ci
mainmodule	hello	{		
		mainchare	Main	{	
				entry	Main(CkArgMsg	∗m);		
		};	
		chare	Singleton	{		
				entry	Singleton();	
		};	
};

hello.cpp
#include	“hello.decl.h”	

class	Main	:	public	CBase_Main	{		
		public:	Main(CkArgMsg∗	m)	{	
				CProxy_Singleton::ckNew();		
		};		
};	
class	Singleton	:	public	CBase_Singleton	{		
		public:	Singleton()	{	
				ckout	<<	“Hello	World!”	<<	endl;		
				CkExit();	
		};		
};	
#include	“hello.def.h”

BW	Webinar	‘18

Hello World with Chares

5/30/18 �48

hello.ci
mainmodule	hello	{		
		mainchare	Main	{	
				entry	Main(CkArgMsg	∗m);		
		};	
		chare	Singleton	{		
				entry	Singleton();	
		};	
};

hello.cpp
#include	“hello.decl.h”	

class	Main	:	public	CBase_Main	{		
		public:	Main(CkArgMsg∗	m)	{	
				CProxy_Singleton::ckNew();		
		};		
};	
class	Singleton	:	public	CBase_Singleton	{		
		public:	Singleton()	{	
				ckout	<<	“Hello	World!”	<<	endl;		
				CkExit();	
		};		
};	
#include	“hello.def.h”

Ci file is processed to generate
code for classes such as
Cbase_Main, Cbase_Singleton,
Cproxy_Singleton

BW	Webinar	‘18

Charm++ File Structure

5/30/18 �49

BW	Webinar	‘18

Charm++ File Structure

5/30/18 �49

• C++ objects (including Charm++ objects)
– Defined in regular .h and .cpp files

BW	Webinar	‘18

Charm++ File Structure

5/30/18 �49

• C++ objects (including Charm++ objects)
– Defined in regular .h and .cpp files

• Chare objects, entry methods (asynchronous methods)
– Defined in .ci file
– Implemented in the .cpp file

BW	Webinar	‘18

Charm++ File Structure

5/30/18 �49

• C++ objects (including Charm++ objects)
– Defined in regular .h and .cpp files

• Chare objects, entry methods (asynchronous methods)
– Defined in .ci file
– Implemented in the .cpp file

Hello World Example
• Compiling

– charmc	hello.ci	
– charmc	-c	hello.cpp	
– charmc	-o	hello	hello.o	

• Running
– ./charmrun	+p7	./hello	
– The +p7 tells the system to

use seven cores

BW	Webinar	‘18

Compiling a Charm++ Program

5/30/18 �50

BW	Webinar	‘18

Hello World with Chares

5/30/18 �51

hello.cpp
#include	“hello.decl.h”	

class	Main	:	public	CBase_Main	{		
		public:	Main(CkArgMsg∗	m)	{	
				CProxy_Singleton::ckNew();		
		};		
};	
class	Singleton	:	public	CBase_Singleton	{		
		public:	Singleton()	{	
				ckout	<<	“Hello	World!”	<<	endl;		
				CkExit();	
		};		
};	
#include	“hello.def.h”

BW	Webinar	‘18

Hello World with Chares

5/30/18 �51

hello.ci
mainmodule	hello	{		
		mainchare	Main	{	
				entry	Main(CkArgMsg	∗m);		
		};	
		chare	Singleton	{		
				entry	Singleton();	
		};	
};

hello.cpp
#include	“hello.decl.h”	

class	Main	:	public	CBase_Main	{		
		public:	Main(CkArgMsg∗	m)	{	
				CProxy_Singleton::ckNew();		
		};		
};	
class	Singleton	:	public	CBase_Singleton	{		
		public:	Singleton()	{	
				ckout	<<	“Hello	World!”	<<	endl;		
				CkExit();	
		};		
};	
#include	“hello.def.h”

BW	Webinar	‘18

Charm Termination

5/30/18 �52
SC'17

•

•

•

There is a special system call CkExit() that terminates the
parallel execution on all processors (but it is called on one
processor) and performs the requisite cleanup
The traditional exit() is insufficient because it only
terminates one process, not the entire parallel job (and will
cause a hang)
CkExit() should be called when you can safely terminate the
application (you may want to synchronize before calling this)

BW	Webinar	‘18

Entry Method Invocation Example: .ci file

5/30/18 �53

mainmodule	MyModule	{	
			mainchare	Main	{	

entry	Main(CkArgMsg	∗m);
			};	

			chare	Simple	{	
						entry	Simple(double	y);	
						entry	void	findArea(int	radius,	bool	done);	
			};	
};

BW	Webinar	‘18

Does this program execute correctly?

5/30/18 �54

BW	Webinar	‘18

Does this program execute correctly?

5/30/18 �54

struct	Main	:	public	CBase_Main	{		
			Main(CkArgMsg∗	m)	{	
						CProxy_Simple	sim	=	CProxy_Simple::ckNew(3.1415);		
						for	(int	i	=	1;	i	<	10;	i++)	sim.findArea(i,	false);		
						sim.findArea(10,	true);	}	};	

struct	Simple	:	public	CBase_Simple	{		
			double	y;	
			Simple(double	pi)	{	y	=	pi;	}	
			void	findArea(int	r,	bool	done)	{	
						ckout	<<	“Area:”	<<	y∗r∗r	<<	endl;		
						if	(done)	CkExit();	}	};

BW	Webinar	‘18

No! Methods are Asynchronous

• If a chare sends multiple
entry method invocations

• These may be delivered in
any order

5/30/18 �55

sim.findArea(1,	false);	
...
sim.findArea(10,	true);

Simple::findArea(int	r,	bool	done){	
		ckout	<<	“Area:”	<<	y∗r∗r	<<	endl;
		if	(done)	CkExit();	}	};

BW	Webinar	‘18

No! Methods are Asynchronous

• If a chare sends multiple
entry method invocations

• These may be delivered in
any order

• Output:

5/30/18 �55

sim.findArea(1,	false);	
...
sim.findArea(10,	true);

Simple::findArea(int	r,	bool	done){	
		ckout	<<	“Area:”	<<	y∗r∗r	<<	endl;
		if	(done)	CkExit();	}	};

Area:	254.34
Area:	200.96
Area:	28.26
Area:	3.14
Area:	12.56
Area:	153.86
Area:	50.24
Area:	78.50
Area:	314.00

BW	Webinar	‘18

No! Methods are Asynchronous

• If a chare sends multiple
entry method invocations

• These may be delivered in
any order

• Output:

5/30/18 �55

sim.findArea(1,	false);	
...
sim.findArea(10,	true);

Simple::findArea(int	r,	bool	done){	
		ckout	<<	“Area:”	<<	y∗r∗r	<<	endl;
		if	(done)	CkExit();	}	};

Area:	254.34
Area:	200.96
Area:	28.26
Area:	3.14
Area:	12.56
Area:	153.86
Area:	50.24
Area:	78.50
Area:	314.00

or

Area:	28.26
Area:	78.50
Area:	3.14
Area:	113.04
Area:	314.00

BW	Webinar	‘18

No! Methods are Asynchronous

• If a chare sends multiple
entry method invocations

• These may be delivered in
any order

• Output:

5/30/18 �55

sim.findArea(1,	false);	
...
sim.findArea(10,	true);

Simple::findArea(int	r,	bool	done){	
		ckout	<<	“Area:”	<<	y∗r∗r	<<	endl;
		if	(done)	CkExit();	}	};

Area:	254.34
Area:	200.96
Area:	28.26
Area:	3.14
Area:	12.56
Area:	153.86
Area:	50.24
Area:	78.50
Area:	314.00

or

Area:	28.26
Area:	78.50
Area:	3.14
Area:	113.04
Area:	314.00

if	(++count	==	10)	CkExit();	}	};

BW Webinar ‘18

Chare Arrays
• Indexed collections of chares

– Every item in the collection has a unique index and proxy
– Can be indexed like an array or by an arbitrary object
– Can be sparse or dense
– Elements may be dynamically inserted and deleted
– Elements are distributed across the available processors,

• May be migrated to other nodes by the user or the runtime

• For many scientific applications, collections of chares are a convenient
abstraction

5/30/18 �56

BW Webinar ‘18

Declaring a Chare Array

.ci file:

�575/30/18

char	 	foo	{	
			entry	foo();	//	constructor	
			//	…	entry	methods	…	
}	
char	 	bar	{	
			entry	bar();	//	constructor	
			//	…	entry	methods	…	
}

BW Webinar ‘18

Declaring a Chare Array

.ci file:
array	[1d]	foo	{	
			entry	foo();	//	constructor	
			//	…	entry	methods	…	
}	
array	[2d]	bar	{	
			entry	bar();	//	constructor	
			//	…	entry	methods	…	
}

�575/30/18

BW Webinar ‘18

Constructing a Chare Array

•
proxy to an individual element in the array

�58

• Constructed much like a regular chare, using ckNew
• The size of each dimension is passed to the constructor at the end 	

			CProxy_foo	myFoo	=	CProxy_foo::ckNew(<params>,	10);			//	1d,	size	10
			CProxy_bar	myBar	=	CProxy_bar::ckNew(<params>,	5,	5);	//	2d,	size	5x5
}

myFoo[4].invokeEntry(…);

The proxy represents the entire array, and may be indexed to obtain a

myBar(2,4).method3(…);

5/30/18

void	 someMethod() {	

BW Webinar ‘18

thisIndex

• 1d: thisIndex returns the index of the current chare array element

• 2d: thisIndex.x and thisIndex.y return the indices of the current
chare array element

�59

.ci file:
array	[1d]	foo	{	
			entry	foo();	
}

.cpp file:
struct	foo	:	public	CBase_foo	{	
			foo()	{ 
						ckout	<<	“array	index:	”	<<	thisIndex;	
			}	
};

5/30/18

BW Webinar ‘18

Chare Array: Hello Example
mainmodule	arr	{	
			mainchare	Main	{	

						entry	Main(CkArgMsg∗);	
			}	
			array	[1D]	hello	{		
						entry	hello(int);	
						entry	void	printHello();		
			}	
}

�605/30/18

BW Webinar ‘18

Chare Array: Hello Example
#include	“arr.decl.h”
struct	Main	:	CBase_Main	{

			Main(CkArgMsg∗	msg)	{
						int	arraySize	=	atoi(msg->argv[1]);
						CProxy_hello	p	=	CProxy_hello::ckNew(arraySize,	arraySize);
						p[0].printHello();
			}
};

�615/30/18

BW Webinar ‘18

Chare Array: Hello Example
#include	“arr.decl.h”
struct	Main	:	CBase_Main	{

			Main(CkArgMsg∗	msg)	{
						int	arraySize	=	atoi(msg->argv[1]);
						CProxy_hello	p	=	CProxy_hello::ckNew(arraySize,	arraySize);
						p[0].printHello();
			}
};
struct	hello	:	CBase_hello	{
			int	arraySize;
			hello(int	n)	:	arraySize(n)	{	}
			void	printHello()	{
						CkPrintf(“PE[%d]:	hello	from	p[%d]\n”,	CkMyPe(),	thisIndex);
						if	(thisIndex	==	arraySize	–	1)	CkExit();
						else	thisProxy[thisIndex	+	1].printHello();
			}
};
#include	“arr.def.h” �615/30/18

BW	Webinar	‘18

Broadcast
• A message to each object in a collection
• The chare array proxy object is used to perform a broadcast
• It looks like a function call to the proxy object

5/30/18 �62

BW	Webinar	‘18

Broadcast
• A message to each object in a collection
• The chare array proxy object is used to perform a broadcast
• It looks like a function call to the proxy object
• From a chare array element that is a member of the same

array:

5/30/18 �62

BW	Webinar	‘18

Broadcast
• A message to each object in a collection
• The chare array proxy object is used to perform a broadcast
• It looks like a function call to the proxy object
• From a chare array element that is a member of the same

array:thisProxy.foo();

5/30/18 �62

BW	Webinar	‘18

Broadcast
• A message to each object in a collection
• The chare array proxy object is used to perform a broadcast
• It looks like a function call to the proxy object
• From a chare array element that is a member of the same

array:

• From any chare that has a proxy p to the chare array

thisProxy.foo();

5/30/18 �62

BW	Webinar	‘18

Broadcast

• From any chare that has a proxy p to the chare array
p.foo();

5/30/18 �62

• A message to each object in a collection
• The chare array proxy object is used to perform a broadcast
• It looks like a function call to the proxy object
• From a chare array element that is a member of the same

array:	

thisProxy.foo();

BW	Webinar	‘18

Reduction

5/30/18 �63

BW	Webinar	‘18

Reduction

• Combines a set of values:

5/30/18 �63

BW	Webinar	‘18

Reduction

• Combines a set of values:
• The operator must be commutative and associative

– sum, max, …

• Each object calls contribute in a reduction

5/30/18 �63

BW	Webinar	‘18

Reduction: Example
#include	“reduction.decl.h”		
const	int	numElements	=	49;		
class	Main	:	public	CBase_Main	{			
public:		

Main(CkArgMsg∗	msg)	{	CProxy_Elem::ckNew(thisProxy,	numElements);	}
			void	done(int	value)	{	CkPrintf(“value:	%d\n”,	value);	CkExit();	}	
};	

class	Elem	:	public	CBase_Elem	{		
public:		
			Elem(CProxy_Main	mProxy)	{ 
						int	val	=	thisIndex; 
						CkCallback	cb(CkReductionTarget(Main,	done),	mProxy); 
						contribute(sizeof(int),	&val,	CkReduction::sum_int,	cb);		
			}		
};		
#include	“reduction.def.h”	

5/30/18 �64

BW	Webinar	‘18

Reduction: Example
#include	“reduction.decl.h”		
const	int	numElements	=	49;		
class	Main	:	public	CBase_Main	{			
public:		

Main(CkArgMsg∗	msg)	{	CProxy_Elem::ckNew(thisProxy,	numElements);	}
			void	done(int	value)	{	CkPrintf(“value:	%d\n”,	value);	CkExit();	}	
};	

class	Elem	:	public	CBase_Elem	{		
public:		
			Elem(CProxy_Main	mProxy)	{ 
						int	val	=	thisIndex; 
						CkCallback	cb(CkReductionTarget(Main,	done),	mProxy); 
						contribute(sizeof(int),	&val,	CkReduction::sum_int,	cb);		
			}		
};		
#include	“reduction.def.h”	

Output
value: 1176
Program finished.

5/30/18 �64

BW	Webinar	‘18

Chare Arrays view

5/30/18 �65

BW	Webinar	‘18

Dynamic Load Balancing

• Object-based decomposition (i.e. virtualized decomposition)
helps
– Charm++ RTS reassigns objects to Pes to balance load
– But how does the RTS decide?

• Multiple strategy options
• E.g. Just move objects away from overloaded processors to underloaded

processors

– How is load determined?

5/30/18 �66

BW	Webinar	‘18

Measurement Based Load Balancing

5/30/18 �67

BW	Webinar	‘18

Measurement Based Load Balancing
• Principle of Persistence

– Object communication patterns and computational loads tend to persist over time
– In spite of dynamic behavior

• Abrupt but infrequent changes
• Slow and small changes

– Recent past is a good predictor of near future

5/30/18 �67

BW	Webinar	‘18

Measurement Based Load Balancing
• Principle of Persistence

– Object communication patterns and computational loads tend to persist over time
– In spite of dynamic behavior

• Abrupt but infrequent changes
• Slow and small changes

– Recent past is a good predictor of near future
• Runtime instrumentation

– Measures communication volume and computation time

5/30/18 �67

BW	Webinar	‘18

Measurement Based Load Balancing
• Principle of Persistence

– Object communication patterns and computational loads tend to persist over time
– In spite of dynamic behavior

• Abrupt but infrequent changes
• Slow and small changes

– Recent past is a good predictor of near future
• Runtime instrumentation

– Measures communication volume and computation time
• Measurement-based load balancers

– Measure load information for chares
– Periodically use the instrumented database to make new decisions and migrate

objects
– Many alternative strategies can use the database

5/30/18 �67

BW	Webinar	‘18

Using the Load Balancer

5/30/18 �68

BW	Webinar	‘18

Using the Load Balancer

• Link a LB module
– -module	<strategy>

– RefineLB, NeighborLB, GreedyCommLB, others
– EveryLB will include all load balancing strategies

5/30/18 �68

BW	Webinar	‘18

Using the Load Balancer

• Link a LB module
– -module	<strategy>

– RefineLB, NeighborLB, GreedyCommLB, others
– EveryLB will include all load balancing strategies

• Compile time option (specify default balancer)
– -balancer	RefineLB

5/30/18 �68

BW	Webinar	‘18

Using the Load Balancer

• Link a LB module
– -module	<strategy>	

– RefineLB, NeighborLB, GreedyCommLB, others
– EveryLB will include all load balancing strategies

• Compile time option (specify default balancer)
– -balancer	RefineLB

• Runtime option (override default)
– +balancer	RefineLB	

5/30/18 �68

BW	Webinar	‘18

Instrumentation

5/30/18 �69

BW	Webinar	‘18

Instrumentation

• By default, instrumentation is enabled
– Automatically collects load information

5/30/18 �69

BW	Webinar	‘18

Instrumentation

• By default, instrumentation is enabled
– Automatically collects load information

• Sometimes, you want LB decisions to be based only on a
portion of your program
– To disable by default, provide runtime argument +LBOff	

– To toggle instrumentation in code, use LBTurnInstrumentOn() and
LBTurnInstrumentOff()

5/30/18 �69

BW	Webinar	‘18

Code to Use Load Balancing

5/30/18 �70

BW	Webinar	‘18

Code to Use Load Balancing

• Set usesAtSync	=	true; in chare constructor

5/30/18 �70

BW	Webinar	‘18

Code to Use Load Balancing

• Set usesAtSync	=	true; in chare constructor

• Insert AtSync() call at a natural barrier
– Call from every chare in all collections
– Does not block

5/30/18 �70

BW	Webinar	‘18

Code to Use Load Balancing

• Set usesAtSync	=	true; in chare constructor

• Insert AtSync() call at a natural barrier
– Call from every chare in all collections
– Does not block

• Implement ResumeFromSync() to resume execution
– A typical ResumeFromSync() contributes to a reduction

5/30/18 �70

BW	Webinar	‘18

Example: Stencil
//	Synchronize	at	every	iteration:	Main	starts	next	iteration	
void	Main::endIter(err)	{	if	(err	<	T)	CkExit();	

else	stencilProxy.sendBoundaries();	}	

//	Assume	a	1D	Stencil	chare	array	with	near	neighbor	communication	
void	Stencil::sendBoundaries()	{ 
		thisProxy(wrap(x-1)).updateGhost(RIGHT,	left_ghost);	
		thisProxy(wrap(x+1)).updateGhost(LEFT,	right_ghost);	
}	

void	Stencil::updateGhost(int	dir,	double	ghost)	{ 
		updateBoundary(dir,	ghost);		
		if	(++remoteCount	==	2)	{	
						remoteCount	=	0;	
						doWork();	}	}

5/30/18 �71

BW	Webinar	‘18

Example: Stencil cont.

void	Stencil::doWork()	{ 
		e	=	(computeKernel()	<	DELTA);	
		if	(++i	%	10	==	0)	{	AtSync();	}	//	Allow	load	balancing	every	10	iterations	
		else	{
}

		contribute(CkCallback(CkReductionTarget(Main,	endIter),	mainProxy));	

5/30/18 �72

	contribute(8,	e,	CkCallback(CkReductionTarget(Main,	endIter),	mainProxy));

BW	Webinar	‘18

Example: Stencil cont.

void	Stencil::doWork()	{ 
		e	=	(computeKernel()	<	DELTA);	
		if	(++i	%	10	==	0)	{	AtSync();	}	//	Allow	load	balancing	every	10	iterations	
		else	{	contribute(8,	e,	CkCallback(CkReductionTarget(Main,	endIter),	mainProxy));	}
}

		contribute(CkCallback(CkReductionTarget(Main,	endIter),	mainProxy));	
}

5/30/18 �72

BW	Webinar	‘18

Example: Stencil cont.

void	Stencil::doWork()	{ 
		e	=	(computeKernel()	<	DELTA);	
		if	(++i	%	10	==	0)	{	AtSync();	}	//	Allow	load	balancing	every	10	iterations	
		else	{	contribute(8,	e,	CkCallback(CkReductionTarget(Main,	endIter),	mainProxy));	}
}

void	Stencil::ResumeFromSync()	{
		contribute(CkCallback(CkReductionTarget(Main,	endIter),	mainProxy));	
}

5/30/18 �72

BW	Webinar	‘18

Serialization and PUP

5/30/18 �73

BW	Webinar	‘18

Serialization and PUP

• How can the RTS move arbitrary objects across nodes?

5/30/18 �73

BW	Webinar	‘18

Serialization and PUP

• How can the RTS move arbitrary objects across nodes?
• Charm++ has a framework for serializing data called PUP

5/30/18 �73

BW	Webinar	‘18

Serialization and PUP

• How can the RTS move arbitrary objects across nodes?
• Charm++ has a framework for serializing data called PUP
• PUP: Pack and Unpack

5/30/18 �73

BW	Webinar	‘18

Serialization and PUP

• How can the RTS move arbitrary objects across nodes?
• Charm++ has a framework for serializing data called PUP
• PUP: Pack and Unpack
• With PUP, chares become serializable and can be transported

to memory, disk, or another processor

5/30/18 �73

BW	Webinar	‘18

Simple PUP for a Simple Chare

class	MyChare	:	
public	Cbase_MyChare	{	
		int	a;
		float	b;	
		char	c;	
		double	localArray[LOCAL_SIZE];
};

void	pup(PUP::er	&p)	{	

		p	|	a;
		p	|	b;
		p	|	c;
		p(localArray,	LOCAL_SIZE);
}

5/30/18 �74

BW	Webinar	‘18

Writing an Advanced PUP Routine
class	MyChare	:	public	Cbase_MyChare	{	
		int	heapArraySize;	
		float*	heapArray;		
		MyClass*	pointer;	
};

5/30/18 �75

BW	Webinar	‘18

Writing an Advanced PUP Routine
class	MyChare	:	public	Cbase_MyChare	{	
		int	heapArraySize;	
		float*	heapArray;		
		MyClass*	pointer;	
};
void	pup(PUP::er	&p)	{	
		p	|	headArraySize;	
		if	(p.isUnpacking())	{	
				heapArray	=	new	float[heapArraySize];	}	
		p(heapArray,	heapArraySize);	
		bool	isNull	=	!pointer;	
		p	|	isNull;	
		if	(!isNull)	{	
				if	(p.isUnpacking())	{	
						pointer	=	new	MyClass();	}	
						p	|	*pointer;	}}

5/30/18 �75

BW	Webinar	‘18

PUP Uses

5/30/18 �76

BW	Webinar	‘18

PUP Uses

• Moving objects for load balancing

5/30/18 �76

BW	Webinar	‘18

PUP Uses

• Moving objects for load balancing
• Marshalling user defined data types

– When using a type you define as a parameter for an entry method
– Type has to be serialized to go over network, uses PUP for this

– Can add PUP to any class, doesn’t have to be a chare

5/30/18 �76

BW	Webinar	‘18

PUP Uses

• Moving objects for load balancing
• Marshalling user defined data types

– When using a type you define as a parameter for an entry method
– Type has to be serialized to go over network, uses PUP for this

– Can add PUP to any class, doesn’t have to be a chare

• Serializing for storage

5/30/18 �76

BW	Webinar	‘18

Split Execution: Checkpoint Restart

5/30/18 �77

BW	Webinar	‘18

Split Execution: Checkpoint Restart

• Can use to stop execution and resume later
– The job runs for 5 hours, then will continue in new allocation

another day!

5/30/18 �77

BW	Webinar	‘18

Split Execution: Checkpoint Restart

• Can use to stop execution and resume later
– The job runs for 5 hours, then will continue in new allocation

another day!

• We can use PUP for this!

5/30/18 �77

BW	Webinar	‘18

Split Execution: Checkpoint Restart

• Can use to stop execution and resume later
– The job runs for 5 hours, then will continue in new allocation

another day!

• We can use PUP for this!
• Instead of migrating to another PE, just “migrate” to disk

5/30/18 �77

BW	Webinar	‘18

How to Enable Split Execution

5/30/18 �78

BW	Webinar	‘18

How to Enable Split Execution

• Call to checkpoint the application is made in the main chare
at a synchronization point

5/30/18 �78

BW	Webinar	‘18

How to Enable Split Execution

• Call to checkpoint the application is made in the main chare
at a synchronization point

• log_path is file system path for checkpoint

5/30/18 �78

BW	Webinar	‘18

How to Enable Split Execution
• Call to checkpoint the application is made in the main chare

at a synchronization point
• log_path is file system path for checkpoint

• Callback	cb called when checkpoint (or restart) is done
– For restart, user needs to provide argument +restart and path of

checkpoint file at runtime

 CkCallback	cb	(CkIndex_Hello:SayHi(),	helloProxy);
CkStartCheckpoint(“log_path”,	cb);

shell>	./charmrun	hello	+p4	+restart	log_path

5/30/18 �78

BW	Webinar	‘18

Chares Are Reactive

5/30/18 �79

BW	Webinar	‘18

Chares Are Reactive
• The way we described Charm++ so far, a chare is a reactive entity:

– If it gets this method invocation, it does this action,
– If it gets that method invocation then it does that action
– But what does it do?
– In typical programs, chares have a life-cycle

5/30/18 �79

BW	Webinar	‘18

Chares Are Reactive
• The way we described Charm++ so far, a chare is a reactive entity:

– If it gets this method invocation, it does this action,
– If it gets that method invocation then it does that action
– But what does it do?
– In typical programs, chares have a life-cycle

• How to express the life-cycle of a chare in code?
– Only when it exists

• i.e. some chares may be truly reactive, and the programmer does not know the life cycle

– But when it exists, its form is:
• Computations depend on remote method invocations, and completion of other local

computations
• A DAG (Directed Acyclic Graph)!

5/30/18 �79

BW	Webinar	‘18

Structured Dagger 
The serial construct

• The serial construct
– A sequential block of C++ code in the .ci file
– The keyword serial means that the code block will be executed without interruption/preemption,

like an entry method
– Syntax: serial	<optionalString>	{	/*	C++	code	*/	}
– The <optionalString> is used for identifying the serial for performance analysis

– Serial blocks can access all members of the class they belong to
• Examples (.ci file):

entry	void	method1(parameters)	{	
				serial	{	

thisProxy.invokeMethod(10);			
callSomeFunction();	

				}	
};

entry	void	method2(parameters)	{	
				serial	“setValue”	{	

value	=	10;	
				}	
};

5/30/18 �80

BW	Webinar	‘18

Structured Dagger 
The when construct

• The when construct
– Declare the actions to perform when a message is received
– In sequence, it acts like a blocking receive

entry	void	someMethod()	{	

		when	entryMethod1(parameters)	{	/∗	block2	∗/	}	
		when	entryMethod2(parameters)	{	/∗	block3	∗/	}	
};

5/30/18 �81

BW	Webinar	‘18

Structured Dagger 
The when construct: waiting for multiple invocations

• Execute SDAG_CODE	when method1 and method2 arrive

• Which is semantically the same as this:

				when	method1(int	param1,	int	param2),	
method2(bool	param3)	

SDAG_CODE

				

when	myMethod1(int	param1,	int	param2)	{	
								

when	myMethod2(bool	param3)	{	}

	

				SDAG_CODE	
				}

5/30/18 �82

BW	Webinar	‘18

Structured Dagger 
The when construct : reference number matching

• The when clause can wait on a certain reference number
• If a reference number is specified for a when , the first

parameter for the when must be the reference number
•

when	method1[100](int	ref,	bool	param1)

/∗	sdag	block	∗/

				serial	{

proxy.method1(200,	false);	/∗	will	not	be	delivered	to	the	when	∗/
proxy.method1(100,	true);	/∗	will	be	delivered	to	the	when	∗/

				}

5/30/18 �83

Semantics: the when will “block” until a message arrives
with that reference number

BW Webinar ‘18

Structured Dagger 
Other constructs

• if-then-else
– Same as the typical C if-then-else semantics and syntax

• for
– Defines a sequenced for loop (like a sequential C for loop)

• while
– Defines a sequenced while loop (like a sequential C while loop)

• forall
– Has “do-all” semantics: iterations may execute in any order

• overlap
– Allows multiple independent constructs to execute in any order
http://charm.cs.illinois.edu/manuals/html/charm++/5.html

5/30/18 �84

http://charm.cs.illinois.edu/manuals/html/charm++/5.html
http://charm.cs.illinois.edu/manuals/html/charm++/5.html
http://charm.cs.illinois.edu/manuals/html/charm++/5.html

BW Webinar ‘18

Interoperability and Within Node Parallelism
• GPGPUs are supported

– Via a “GPU Manager” module, with asynchronous callbacks into Charm++
code

• Multicore:
– Charm++ has its own OpenMP runtime implementation (via LLVM)

• Highly flexible nested parallelism

– Charm++ can run in a mode with 1 PE on each process
• Interoperates with regular OpenMP, OMPSS, other task models,

• Charm++ interoperates with MPI
– So, some modules can be written in Charm++, rest in MPI

5/30/18 �85

BW Webinar ‘18

Control flow within chare

• Structured dagger notation
– Provides a script-like language for expressing dag of dependencies

between method invocations and computations

• Threaded Entry methods
– Allows entry methods to block without blocking the PE

– Supports futures, and
– ability to suspend/resume threads

5/30/18 �86

BW	Webinar	‘18

Advanced Concepts
• Priorities

• Entry method tags

• Quiescence detection

• LiveViz: visualization from a parallel program

• CharmDebug: a powerful debugging tool

• Projections: Performance Analysis and Visualization, really nice, and a workhorse tool for Charm++
developers

• Messages (instead of marshalled parameters)

• Processor-aware constructs:

– Groups: like a non-migratable chare array with one element on each “core”

– Nodegroups: one element on each process

5/30/18 �87

BW Webinar ‘18

NAMD: Biomolecular Simulations

• Collaboration with K. Schulten
• With over 70,000 registered

users
• Scaled to most top US

supercomputers
• In production use on

supercomputers and clusters
and desktops

• Gordon Bell award in 2002

Determination of the structure of
HIV capsid by researchers
including Prof Schulten

�885/30/18

BW Webinar ‘18

Parallelization using Charm++

�895/30/18

BW Webinar ‘18

Parallelization using Charm++

�895/30/18

BW Webinar ‘18

ChaNGa: Parallel Gravity
• Collaborative project (NSF)

– with Tom Quinn, Univ. of Washington

• Gravity, gas dynamics
• Barnes-Hut tree codes

– Oct tree is natural decomp

– Geometry has better aspect ratios, so you
“open” up fewer nodes

– But is not used because it leads to bad load
balance

– Assumption: one-to-one map between sub-
trees and PEs

– Binary trees are considered better load
balanced

�90

Evolution of Universe and Galaxy
Formation

5/30/18

BW Webinar ‘18

ChaNGa: Parallel Gravity
• Collaborative project (NSF)

– with Tom Quinn, Univ. of Washington

• Gravity, gas dynamics
• Barnes-Hut tree codes

– Oct tree is natural decomp

– Geometry has better aspect ratios, so you
“open” up fewer nodes

– But is not used because it leads to bad load
balance

– Assumption: one-to-one map between sub-
trees and PEs

– Binary trees are considered better load
balanced

�90

Evolution of Universe and Galaxy
Formation

5/30/18

BW Webinar ‘18

ChaNGa: Parallel Gravity
• Collaborative project (NSF)

– with Tom Quinn, Univ. of Washington

• Gravity, gas dynamics
• Barnes-Hut tree codes

– Oct tree is natural decomp

– Geometry has better aspect ratios, so you
“open” up fewer nodes

– But is not used because it leads to bad load
balance

– Assumption: one-to-one map between sub-
trees and PEs

– Binary trees are considered better load
balanced

�90

With Charm++: Use Oct-Tree, and let Charm++
map subtrees to processors

Evolution of Universe and Galaxy
Formation

5/30/18

BW Webinar ‘18

ChaNGa: Parallel Gravity
• Collaborative project (NSF)

– with Tom Quinn, Univ. of Washington

• Gravity, gas dynamics
• Barnes-Hut tree codes

– Oct tree is natural decomp

– Geometry has better aspect ratios, so you
“open” up fewer nodes

– But is not used because it leads to bad load
balance

– Assumption: one-to-one map between sub-
trees and PEs

– Binary trees are considered better load
balanced

�90

With Charm++: Use Oct-Tree, and let Charm++
map subtrees to processors

Evolution of Universe and Galaxy
Formation

5/30/18

BW	Webinar	‘18

OpenAtom: On the fly ab initio molecular dynamics on the ground
state surface with instantaneous GW-BSE level spectra

 PIs: G.J. Martyna, IBM; S. Ismail-Beigi, Yale; L. Kale, UIUC;
Team: Q. Li, IBM, M. Kim, Yale; S. Mandal, Yale;

E. Bohm, UIUC; N. Jain, UIUC; M. Robson, UIUC;
E. Mikida, UIUC; P. Jindal, UIUC; T. Wicky, UIUC.

1

Light in

5/30/18 �91

BW Webinar ‘18

Decomposition and Computation Flow

�925/30/18

BW Webinar ‘18

Mini-App Features Machine Max cores

AMR Overdecomposition, Custom
array index, Message priorities,

Load Balancing, Checkpoint
restart

BG/Q 131,072

LeanMD Overdecomposition, Load
Balancing, Checkpoint restart,

Power awareness

BG/P
BG/Q

131,072
32,768

Barnes-Hut
(n-body)

Overdecomposition, Message
priorities, Load Balancing

Blue Waters 16,384

LULESH 2.02 AMPI, Over-decomposition,
Load Balancing

Hopper 8,000

PDES Overdecomposition, Message
priorities, TRAM

Stampede 4,096

MiniApps

�93

Available at: http://charmplusplus.org/miniApps/

5/30/18

BW Webinar ‘18

Mini-App Features Machine Max cores

1D FFT Interoperable with MPI BG/P
BG/Q

65,536
16,384

Random Access TRAM BG/P
BG/Q

131,072
16,384

Dense LU SDAG XT5 8,192

Sparse Triangular Solver SDAG BG/P 512

GTC SDAG BG/Q 1,024

SPH Blue Waters -

More MiniApps

�945/30/18

BW Webinar ‘18 �95

Describes seven major
applications developed
using Charm++

More info on Charm++:
http://charm.cs.illinois.edu
Including the miniApps

5/30/18

http://charm.cs.illinois.edu/

BW Webinar ‘18

Saving Cooling Energy

�965/30/18

BW Webinar ‘18

Saving Cooling Energy
• Easy: increase A/C setting

– But: some cores may get too hot

• So, reduce frequency if temperature is high (DVFS)
– Independently for each chip

�965/30/18

BW Webinar ‘18

Saving Cooling Energy
• Easy: increase A/C setting

– But: some cores may get too hot

• So, reduce frequency if temperature is high (DVFS)
– Independently for each chip

• But, this creates a load imbalance!

�965/30/18

BW Webinar ‘18

Saving Cooling Energy
• Easy: increase A/C setting

– But: some cores may get too hot

• So, reduce frequency if temperature is high (DVFS)
– Independently for each chip

• But, this creates a load imbalance!
• No problem, we can handle that:

– Migrate objects away from the slowed-down processors
– Balance load using an existing strategy
– Strategies take speed of processors into account

�965/30/18

BW Webinar ‘18

Saving Cooling Energy
• Easy: increase A/C setting

– But: some cores may get too hot

• So, reduce frequency if temperature is high (DVFS)
– Independently for each chip

• But, this creates a load imbalance!
• No problem, we can handle that:

– Migrate objects away from the slowed-down processors
– Balance load using an existing strategy
– Strategies take speed of processors into account

• Implemented in experimental version
– SC 2011 paper, IEEE TC paper

• Several new power/energy-related strategies
– PASA ‘12: Exploiting differential sensitivities of code segments to frequency change

�965/30/18

BW Webinar ‘18

PARM:Power Aware Resource Manager

• Charm++ RTS facilitates malleable jobs
• PARM can improve throughput under a fixed power budget using:

– overprovisioning (adding more nodes than conventional data center)
– RAPL (capping power consumption of nodes)
– Job malleability and moldability

�975/30/18

