
Supercomputing: Past, Present, Future
Marc Snir

THE JURASSIC ERA OF
SUPERCOMPUTING

Those who cannot remember the past are
condemned to repeat it. (Santayana) �2

Cray 1

• Vector supercomputer
• 1976
• 12.5 nsec clock
• 160-250 MFLOPs
• 1 Mword memory
• ~250,000 ECL gates
• Freon cooling
• 115 kW (not including cooling and I/O)

�3

The End – Cray 3

• 1993
• GaAs gates
• 2.2 nsec
• ~1.9 GFLOPs
• up to 2 GW
• Immersive fluoerinert cooling
• 16 Gflops (?)
• Was never sold (Cray went bankrupt)

�4

The 1990 Big Extinction: The Attack of the
Killer Micros  
(Eugene Brooks, 1990)

Shift from bipolar vector machines & to clusters of MOS micros

�5

The 1990 Big Extinction: The Attack of the
Killer Micros  
(Eugene Brooks, 1990)

Shift from bipolar vector machines & to clusters of MOS micros
• Roadblock: bipolar circuits leaked too much current – it became too hard

to cool them (even with liquid nitrogen)

�5

The 1990 Big Extinction: The Attack of the
Killer Micros  
(Eugene Brooks, 1990)

Shift from bipolar vector machines & to clusters of MOS micros
• Roadblock: bipolar circuits leaked too much current – it became too hard

to cool them (even with liquid nitrogen)
• MOS was leaking very little – did not require aggressive cooling

�5

The 1990 Big Extinction: The Attack of the
Killer Micros  
(Eugene Brooks, 1990)

Shift from bipolar vector machines & to clusters of MOS micros
• Roadblock: bipolar circuits leaked too much current – it became too hard

to cool them (even with liquid nitrogen)
• MOS was leaking very little – did not require aggressive cooling
• MOS was used in fast growing markets: controllers, workstations, PCs

�5

The 1990 Big Extinction: The Attack of the
Killer Micros  
(Eugene Brooks, 1990)

Shift from bipolar vector machines & to clusters of MOS micros
• Roadblock: bipolar circuits leaked too much current – it became too hard

to cool them (even with liquid nitrogen)
• MOS was leaking very little – did not require aggressive cooling
• MOS was used in fast growing markets: controllers, workstations, PCs
• MOS had a 20 year history and clear evolution path (“Moore’s Law”)

�5

The 1990 Big Extinction: The Attack of the
Killer Micros  
(Eugene Brooks, 1990)

Shift from bipolar vector machines & to clusters of MOS micros
• Roadblock: bipolar circuits leaked too much current – it became too hard

to cool them (even with liquid nitrogen)
• MOS was leaking very little – did not require aggressive cooling
• MOS was used in fast growing markets: controllers, workstations, PCs
• MOS had a 20 year history and clear evolution path (“Moore’s Law”)
• MOS was slower (good enough disruptive technology – Christensen)

�5

The 1990 Big Extinction: The Attack of the
Killer Micros  
(Eugene Brooks, 1990)

Shift from bipolar vector machines & to clusters of MOS micros
• Roadblock: bipolar circuits leaked too much current – it became too hard

to cool them (even with liquid nitrogen)
• MOS was leaking very little – did not require aggressive cooling
• MOS was used in fast growing markets: controllers, workstations, PCs
• MOS had a 20 year history and clear evolution path (“Moore’s Law”)
• MOS was slower (good enough disruptive technology – Christensen)
– Cray C90 vs. CM5 in 1991: 244 MHz vs. 32 MHz

�5

THE AGE OF THE MAMMALS:
MOORE’S LAW

�6

�7

#transistors	
per	chip	
doubling	every	
two	years

25 Years = 106: from 200 Gflops to 200 Pflops

�8

25 Years = 106: from 200 Gflops to 200 Pflops

1. Ride Moore’s Law – use chips with more and more
transistors (~x104)

�8

25 Years = 106: from 200 Gflops to 200 Pflops

1. Ride Moore’s Law – use chips with more and more
transistors (~x104)

2. Run them faster (~x102)
– that stopped > 10 years ago

�8

25 Years = 106: from 200 Gflops to 200 Pflops

1. Ride Moore’s Law – use chips with more and more
transistors (~x104)

2. Run them faster (~x102)
– that stopped > 10 years ago

3. Build bigger (and more expensive) machines (~x10)

�8

25 Years = 106: from 200 Gflops to 200 Pflops

1. Ride Moore’s Law – use chips with more and more
transistors (~x104)

2. Run them faster (~x102)
– that stopped > 10 years ago

3. Build bigger (and more expensive) machines (~x10)
4. Use mass-produced components wherever possible
– So as to be on the same cost-performance curve as mass-

produced devices and software
• Over the years, customization has decreased! (no

specialized OS, no specialized networks…); trend
continues, with cloud technologies

– Efficiency has decreased!

�8

Loss of Efficiency -- SPECint

�9

Gain	from	faster	clock

Actual	gain	(benchmarks)

Theoretical	gain	if	efficiency	
were	preserved

(Leiserson	et	al,	There's	Plenty	of	Room	at	the	Top)

Moore’s Law

• Not a law of nature, but of economics:

The cost per transistor is minimized by
doubling the number of transistors per chip
every two years.

• Achieved by technological progress and
by increasing manufacturing volumes

• Due to growth in market size AND
increased industry consolidation

• 20 companies produced 130 nm
chips; only 4 produce ~10 nm chips:
TSMC, Global Foundries, Samsung
and Intel

�10

Proceedings	of	the	IEEE	|	Vol.	103,	No.	10,	October	2015

Moore’s Law is Dying

�11

Moore’s Law is Dying

• Technological wall reached at ~5nm (number of atoms
per gate too small)

�11

Moore’s Law is Dying

• Technological wall reached at ~5nm (number of atoms
per gate too small)

• Continued evolution is increasingly expensive (both
non-recurring costs and manufacturing costs)
– Consolidation is not an option anymore

�11

Moore’s Law is Dying

• Technological wall reached at ~5nm (number of atoms
per gate too small)

• Continued evolution is increasingly expensive (both
non-recurring costs and manufacturing costs)
– Consolidation is not an option anymore

• Performance gains from continued miniaturization are
decreasing

�11

Moore’s Law is Dying

• Technological wall reached at ~5nm (number of atoms
per gate too small)

• Continued evolution is increasingly expensive (both
non-recurring costs and manufacturing costs)
– Consolidation is not an option anymore

• Performance gains from continued miniaturization are
decreasing

• Deployment of new silicon generations has slowed
down

�11

WHAT NEXT?

�12

Evolution: Faster and/or Lower Power Gates

• Goal: Lower
speed⨯energy
product

• No technology offers
significant
advantage over
CMOS
• ~10 year gap from
device in lab to
manufactured chip

�13

Revolution: Totally Different Technology

• No technology is
ready for prime
time; many will fail

• Many (e.g.,
quantum, analog
optics) are not
general-purpose

• Need to exploit
opportunities
above device level

�14

(ITRS	2013)

PACKAGING & COOLING

�15

Increase Density and Improve Interchip
Communication

Crossing chip
boundaries is
slow and
energy-
expensive

�16

(Kogge	&	Shalf,	Exascale	Computing	Trends:	Adjusting	to	the	"New	Normal"'	for	Computer	Architecture	
Computing	in	Science	and	Engineering	Nov	2013)

Technologies

�17(GaTech)

chip	package

printed	circuit	board
multi	chip	module

chiplets	on	silicon	interposer

vertical	packaging

• Can build larger tightly-coupled
system

• Lower design and manufacturing
costs (better yield)

• Easier customization

ARCHITECTURE

�18

Processor Specialization & Adaptation

�19

Processor Specialization & Adaptation

• Dynamically reconfigurable hardware (heterogeneity in
time)
–We control today frequency at chip level
–Will control frequency/power for individual components

(cores, memory controllers) and will be able to gate
them

–May use FPGAs

�19

Processor Specialization & Adaptation

• Dynamically reconfigurable hardware (heterogeneity in
time)
–We control today frequency at chip level
–Will control frequency/power for individual components

(cores, memory controllers) and will be able to gate
them

–May use FPGAs
• Specialized accelerators (heterogeneity in space)

�19

Processor Specialization & Adaptation

• Dynamically reconfigurable hardware (heterogeneity in
time)
–We control today frequency at chip level
–Will control frequency/power for individual components

(cores, memory controllers) and will be able to gate
them

–May use FPGAs
• Specialized accelerators (heterogeneity in space)
• Specialized memories (ibid)

�19

ASIC vs. Software (H.264 encoder)

• Main contribution of ASIC
is to reduce overheads

�20

speedup

• functional	units	
• register	files	
• control	
• pipeline	registers,	

buses	
• data	cache	
• instruction	fetch/

decode

energy

(Hameed	et	al,	Understanding	Sources	of	Inefficiency	in		

General-Purpose	Chips.	CACM	1Oct	2011)

KNL: DDR4 vs. MCDRAM (HBM)

• MCDRAM has
x4 bandwidth
of DDR

• MCDRAM is
limited to 16
GB while DDR
can grow to
384 GB

• MCDRAM has
higher latency

�21

DGEMM

Graph500

(Peng,	et	al,	Exploring	the	Performance	Benefit	of		
Hybrid	Memory	System	on	HPC	Environments.	IPDPSW	2017)

Stream Random	access

Remarks (1)

�22

Remarks (1)

• Specialized hardware has less of a handicap with the end
of Moore’s Law
– One design has longer lifetime
– Can use “dark silicon”

�22

Remarks (1)

• Specialized hardware has less of a handicap with the end
of Moore’s Law
– One design has longer lifetime
– Can use “dark silicon”

• ASIC – Application-Specific Integrated Circuit, is not an
option for HPC (too many apps); we can use algorithm
specific or computation-pattern specific chip
– E.g., FFT or Molecular Dynamic accelerators

�22

Remarks (1)

• Specialized hardware has less of a handicap with the end
of Moore’s Law
– One design has longer lifetime
– Can use “dark silicon”

• ASIC – Application-Specific Integrated Circuit, is not an
option for HPC (too many apps); we can use algorithm
specific or computation-pattern specific chip
– E.g., FFT or Molecular Dynamic accelerators

• How many distinct accelerators are needed to cover a
high fraction of scientific computing cycles?

�22

Issues (2)

�23

Issues (2)
• Hardware components are not all equal and change over time (power

management, fault tolerance)

�23

Issues (2)
• Hardware components are not all equal and change over time (power

management, fault tolerance)
• Applications are increasingly dynamic and irregular

�23

Issues (2)
• Hardware components are not all equal and change over time (power

management, fault tolerance)
• Applications are increasingly dynamic and irregular
• How do you map an evolving computation onto a heterogeneous,

evolving platform?

�23

Issues (2)
• Hardware components are not all equal and change over time (power

management, fault tolerance)
• Applications are increasingly dynamic and irregular
• How do you map an evolving computation onto a heterogeneous,

evolving platform?

• Current trend:
– Higher level, “hybrid dataflow” type code
• codelets and dependencies
• with data reuse – hence can express locality

– Intelligent runtime that maps codelets to resources and event-driven
scheduler

�23

Issues (2)
• Hardware components are not all equal and change over time (power

management, fault tolerance)
• Applications are increasingly dynamic and irregular
• How do you map an evolving computation onto a heterogeneous,

evolving platform?

• Current trend:
– Higher level, “hybrid dataflow” type code
• codelets and dependencies
• with data reuse – hence can express locality

– Intelligent runtime that maps codelets to resources and event-driven
scheduler

• Legion (Aiken), Parsec (Bosilca)…

�23

Issues (2)
• Hardware components are not all equal and change over time (power

management, fault tolerance)
• Applications are increasingly dynamic and irregular
• How do you map an evolving computation onto a heterogeneous,

evolving platform?

• Current trend:
– Higher level, “hybrid dataflow” type code
• codelets and dependencies
• with data reuse – hence can express locality

– Intelligent runtime that maps codelets to resources and event-driven
scheduler

• Legion (Aiken), Parsec (Bosilca)…
• Need more asynchronous algorithms and better support for producer-

consumer synchronization in hardware and firmware

�23

COMPILER &RUNTIME

�24

Issue

• Compilers do not
properly map code to
hardware, even in the
simplest case

�25

4kx4k	Matrix	product	eme

Python

Java

C

Parallel	loops

Divide&Conquer

Vectorizaeon

AVX	intrinsics

0.10 1.00 10.00 100.00 1,000.00 10,000.00 100,000.00

0.41

1.1

3.8

69.8

542.67

2372.68

25552.48

(Leiserson	et	al,	There's	Plenty	of	Room	at	the	Top)

Possible Solutions

�26

Possible Solutions

• “Elbow grease” (hard work)

�26

Possible Solutions

• “Elbow grease” (hard work)
• Autotuning: search for optimal code configuration

�26

Possible Solutions

• “Elbow grease” (hard work)
• Autotuning: search for optimal code configuration
• Interactive autotuning?

�26

Possible Solutions

• “Elbow grease” (hard work)
• Autotuning: search for optimal code configuration
• Interactive autotuning?
• Application of ML?

�26

Possible Solutions

• “Elbow grease” (hard work)
• Autotuning: search for optimal code configuration
• Interactive autotuning?
• Application of ML?

�26

Possible Solutions

• “Elbow grease” (hard work)
• Autotuning: search for optimal code configuration
• Interactive autotuning?
• Application of ML?

• Need to collect training data in a much more extensive
and systematic manner!

�26

ALGORITHMS

�27

Algorithmic Improvements Often Exceed
Moore’s Law Contribution

�28

(Sven	Leyffer)

O(n)

O(n2.3)

Poisson	solver	n=64x64x64
Traveling	Salesman	Problem

(A	SCIENCE-BASED	CASE	FOR	LARGE-SCALE	SIMULATION	
DOE	SC	2003)

Is There Still Room for Improvements?

�29

Is There Still Room for Improvements?

• A lot, for exponential optimization problems (such as
TSP)

�29

Is There Still Room for Improvements?

• A lot, for exponential optimization problems (such as
TSP)

• A lot, for aleatoric systems (estimate probability
distribution – infinite dimensional space)

�29

Is There Still Room for Improvements?

• A lot, for exponential optimization problems (such as
TSP)

• A lot, for aleatoric systems (estimate probability
distribution – infinite dimensional space)

• Much, even for problems where we seem to be at the
end of the road – as we got to linear complexity

�29

What is Problem Size n?

�30

What is Problem Size n?

• Consider a PDE iterative solver
– Can use meshes of different resolutions
– Can use adaptive meshes
– Can use lower precision arithmetic
– Can compress data
– Can allow for occasional bit flips
– Can leverage knowledge of what the output is used for

�30

What is Problem Size n?

• Consider a PDE iterative solver
– Can use meshes of different resolutions
– Can use adaptive meshes
– Can use lower precision arithmetic
– Can compress data
– Can allow for occasional bit flips
– Can leverage knowledge of what the output is used for

• Can sample, for aleatoric problems

�30

What is Problem Size n?

• Consider a PDE iterative solver
– Can use meshes of different resolutions
– Can use adaptive meshes
– Can use lower precision arithmetic
– Can compress data
– Can allow for occasional bit flips
– Can leverage knowledge of what the output is used for

• Can sample, for aleatoric problems

• How many bits are needed to solve a particular problem, and
how stable these bits need be?

�30

Lower Precision Arithmetic

• Can run at least twice as fast with 32 bit arithmetic
rather than 64 bits
– Twice as many floating point operations, when using

vector operations
– Twice as many operands per memory access
– Twice cache capacity
–~1/3 energy consumption

�31

Use Lower Precision

�32

Energy	consumed	by	inexact	
Newton	solver	of	Rosenbrock	
Equation	(𝜀	=	10-5)		

Run	single-precision,	next	double	
precision		(𝜀	=	10-13)	

(Leyffer	et	a.	lDoing	Moore	with	Less--Leapfrogging	Moore’s		
	Law	with	Inexactness	for	Supercomputing.		arXiv	Oct	2016)

Reinvest	energy	saved	by	using	lower	
precision	in	order	to	reduce	error

Error Introduced by Lossy Compression of
Checkpoint

�33

PlasComCM	
• Compression	tolerance	of	𝜀=10-6	
• Compression	ratio	of	~x7

Nek5000	
• Compression	tolerance	of	𝜀=10-7	
• Compression	ratio	of	~x3

J.	Calhoun	et	al	Exploring	the	feasibility	of	lossy	compression	for	PDE	simulations	
IJHPCA,	2018

Can Cope with Occasional Bit-Flips

• Algorithm Based Fault Tolerance (ABFT): Can build
algorithm specific fault detectors, using properties of
the algorithm

• ML based fault detection: Can learn to detect error
patterns for a specific solver (anomaly detection)

• Hypothesis: Errors either do not affect too much final
solution or are easy to detect.

�34

CONCLUSION

�35

Future

• The end of Moore’s Law is not the end of supercomputing
• Plenty of important problems can benefit from continued increase in

performance
• Increasing performance will require increasing specialization, and

moving away from commodity technologies
– Different, specialized hardware
– Specialized software
– Focus on performance, not ease of programming

• Specialization is affordable when device technology is stable and
justifiable due to the benefits from improved performance

• Think of a supercomputer not as a computer made large, but as a
unique, expensive scientific instrument that cost billions, is used over
decades, and require unique skills in order to use efficiently

�36

�37

Questions?

