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THE JURASSIC ERA OF 
SUPERCOMPUTING

Those who cannot remember the past are 
condemned to repeat it. (Santayana) �2



Cray 1

• Vector supercomputer 
• 1976 
• 12.5 nsec clock 
• 160-250 MFLOPs 
• 1 Mword memory 
• ~250,000 ECL gates 
• Freon cooling 
• 115 kW (not including cooling and I/O)
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The End – Cray 3

• 1993 
• GaAs gates 
• 2.2 nsec 
• ~1.9 GFLOPs 
• up to 2 GW 
• Immersive fluoerinert cooling 
• 16 Gflops (?) 
• Was never sold (Cray went bankrupt)
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The 1990 Big Extinction: The Attack of the 
Killer Micros      
(Eugene Brooks, 1990)

Shift from bipolar vector machines & to clusters of MOS micros
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The 1990 Big Extinction: The Attack of the 
Killer Micros      
(Eugene Brooks, 1990)

Shift from bipolar vector machines & to clusters of MOS micros
• Roadblock: bipolar circuits leaked too much current – it became too hard 

to cool them (even with liquid nitrogen)
• MOS was leaking very little – did not require aggressive cooling
• MOS was used in fast growing markets: controllers, workstations, PCs
• MOS had a 20 year history and clear evolution path (“Moore’s Law”)
• MOS was slower (good enough disruptive technology – Christensen)
– Cray C90 vs. CM5 in 1991: 244 MHz vs. 32 MHz
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THE AGE OF THE MAMMALS:                          
MOORE’S LAW
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#transistors	
per	chip	
doubling	every	
two	years



25 Years = 106: from 200 Gflops to 200 Pflops

�8



25 Years = 106: from 200 Gflops to 200 Pflops

1. Ride Moore’s Law – use chips with more and more 
transistors (~x104)

�8



25 Years = 106: from 200 Gflops to 200 Pflops

1. Ride Moore’s Law – use chips with more and more 
transistors (~x104)

2. Run them faster (~x102) 
– that stopped > 10 years ago

�8



25 Years = 106: from 200 Gflops to 200 Pflops

1. Ride Moore’s Law – use chips with more and more 
transistors (~x104)

2. Run them faster (~x102) 
– that stopped > 10 years ago

3. Build bigger (and more expensive) machines (~x10)

�8



25 Years = 106: from 200 Gflops to 200 Pflops

1. Ride Moore’s Law – use chips with more and more 
transistors (~x104)

2. Run them faster (~x102) 
– that stopped > 10 years ago

3. Build bigger (and more expensive) machines (~x10)
4. Use mass-produced components wherever possible  
– So as to be on the same cost-performance curve as mass-

produced devices and software 
• Over the years, customization has decreased! (no 

specialized OS, no specialized networks…); trend 
continues, with cloud technologies 

– Efficiency has decreased!
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Loss of Efficiency -- SPECint

�9

Gain	from	faster	clock

Actual	gain	(benchmarks)

Theoretical	gain	if	efficiency	
were	preserved

(Leiserson	et	al,	There's	Plenty	of	Room	at	the	Top)



Moore’s Law

• Not a law of nature, but of economics: 

The cost per transistor is minimized by 
doubling the number of transistors per chip 
every two years. 

• Achieved by technological progress and 
by increasing manufacturing volumes 

• Due to growth in market size AND 
increased industry consolidation   

• 20 companies produced 130 nm 
chips; only 4 produce ~10 nm chips: 
TSMC, Global Foundries, Samsung 
and Intel

�10

Proceedings	of	the	IEEE	|	Vol.	103,	No.	10,	October	2015



Moore’s Law is Dying
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Moore’s Law is Dying

• Technological wall reached at ~5nm (number of atoms 
per gate too small)

• Continued evolution is increasingly expensive (both 
non-recurring costs and manufacturing costs) 
– Consolidation is not an option anymore

• Performance gains from continued miniaturization are 
decreasing

• Deployment of new silicon generations has slowed 
down
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WHAT NEXT?
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Evolution: Faster and/or Lower Power Gates

• Goal: Lower 
speed⨯energy 
product 

• No technology offers 
significant 
advantage over 
CMOS 
• ~10 year gap from 
device in lab to 
manufactured chip
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Revolution: Totally Different Technology

• No technology is 
ready for prime 
time; many will fail 

• Many (e.g., 
quantum, analog 
optics) are not 
general-purpose 

• Need to exploit 
opportunities 
above device level
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(ITRS	2013)



PACKAGING & COOLING

�15



Increase Density and Improve Interchip 
Communication 

Crossing chip 
boundaries is 
slow and 
energy-
expensive
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(Kogge	&	Shalf,	Exascale	Computing	Trends:	Adjusting	to	the	"New	Normal"'	for	Computer	Architecture	
Computing	in	Science	and	Engineering	Nov	2013)



Technologies

�17(GaTech)

chip	package

printed	circuit	board
multi	chip	module

chiplets	on	silicon	interposer

vertical	packaging

• Can build larger tightly-coupled 
system 

• Lower design and manufacturing 
costs (better yield) 

• Easier customization  



ARCHITECTURE
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Processor Specialization & Adaptation
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Processor Specialization & Adaptation

• Dynamically reconfigurable hardware (heterogeneity in 
time) 
–We control today frequency at chip level 
–Will control frequency/power for individual components 

(cores, memory controllers) and will be able to gate 
them 

–May use FPGAs
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Processor Specialization & Adaptation

• Dynamically reconfigurable hardware (heterogeneity in 
time) 
–We control today frequency at chip level 
–Will control frequency/power for individual components 

(cores, memory controllers) and will be able to gate 
them 

–May use FPGAs
• Specialized accelerators (heterogeneity in space)
• Specialized memories (ibid)
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ASIC vs. Software (H.264 encoder)

• Main contribution of ASIC 
is to reduce overheads

�20

speedup

• functional	units	
• register	files	
• control	
• pipeline	registers,	

buses	
• data	cache	
• instruction	fetch/

decode

energy

(Hameed	et	al,	Understanding	Sources	of	Inefficiency	in		

General-Purpose	Chips.	CACM	1Oct	2011)



KNL: DDR4 vs. MCDRAM (HBM)

• MCDRAM has 
x4 bandwidth 
of DDR 

• MCDRAM is 
limited to 16 
GB while DDR 
can grow to 
384 GB 

• MCDRAM has 
higher latency
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DGEMM

Graph500

(Peng,	et	al,	Exploring	the	Performance	Benefit	of		
Hybrid	Memory	System	on	HPC	Environments.	IPDPSW	2017)

Stream Random	access
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Remarks (1)

• Specialized hardware has less of a handicap with the end 
of Moore’s Law 
– One design has longer lifetime 
– Can use “dark silicon”

• ASIC – Application-Specific Integrated Circuit, is not an 
option for HPC (too many apps); we can use algorithm 
specific or computation-pattern specific chip 
– E.g., FFT or Molecular Dynamic accelerators

• How many distinct accelerators are needed to cover a 
high fraction of scientific computing cycles?
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Issues (2)
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Issues (2)
• Hardware components are not all equal and change over time (power 

management, fault tolerance)
• Applications are increasingly dynamic and irregular
• How do you map an evolving computation onto a heterogeneous, 

evolving platform?

• Current trend: 
– Higher level, “hybrid dataflow” type code 
• codelets and dependencies 
• with data reuse – hence can express locality 

– Intelligent runtime that maps codelets to resources and event-driven 
scheduler

• Legion (Aiken), Parsec (Bosilca)…
• Need more asynchronous algorithms and better support for producer-

consumer synchronization in hardware and firmware 
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COMPILER &RUNTIME

�24



Issue

• Compilers do not 
properly map code to 
hardware, even in the 
simplest case
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4kx4k	Matrix	product	eme

Python

Java

C

Parallel	loops

Divide&Conquer

Vectorizaeon

AVX	intrinsics
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25552.48

(Leiserson	et	al,	There's	Plenty	of	Room	at	the	Top)
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Possible Solutions

• “Elbow grease” (hard work)
• Autotuning: search for optimal code configuration
• Interactive autotuning? 
• Application of ML?

• Need to collect training data in a much more extensive 
and systematic manner!
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ALGORITHMS
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Algorithmic Improvements Often Exceed 
Moore’s Law Contribution
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(Sven	Leyffer)

O(n)

O(n2.3)

Poisson	solver	n=64x64x64
Traveling	Salesman	Problem

(A	SCIENCE-BASED	CASE	FOR	LARGE-SCALE	SIMULATION	
DOE	SC	2003)



Is There Still Room for Improvements?
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Is There Still Room for Improvements?

• A lot, for exponential optimization problems (such as 
TSP)

• A lot, for aleatoric systems (estimate probability 
distribution – infinite dimensional space)

• Much, even for problems where we seem to be at the 
end of the road – as we got to linear complexity
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What is Problem Size n?

• Consider a PDE iterative solver 
– Can use meshes of different resolutions 
– Can use adaptive meshes 
– Can use lower precision arithmetic 
– Can compress data 
– Can allow for occasional bit flips 
– Can leverage knowledge of what the output is used for
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What is Problem Size n?

• Consider a PDE iterative solver 
– Can use meshes of different resolutions 
– Can use adaptive meshes 
– Can use lower precision arithmetic 
– Can compress data 
– Can allow for occasional bit flips 
– Can leverage knowledge of what the output is used for

• Can sample, for aleatoric problems 

• How many bits are needed to solve a particular problem, and 
how stable these bits need be?
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Lower Precision Arithmetic

• Can run at least twice as fast with 32 bit arithmetic 
rather than 64 bits 
– Twice as many floating point operations, when using 

vector operations 
– Twice as many operands per memory access 
– Twice cache capacity 
–~1/3 energy consumption
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Use Lower Precision
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Energy	consumed	by	inexact	
Newton	solver	of	Rosenbrock	
Equation	(	𝜀	=	10-5)		

Run	single-precision,	next	double	
precision		(	𝜀	=	10-13)	

(Leyffer	et	a.	lDoing	Moore	with	Less--Leapfrogging	Moore’s		
	Law	with	Inexactness	for	Supercomputing.		arXiv	Oct	2016)

Reinvest	energy	saved	by	using	lower	
precision	in	order	to	reduce	error



Error Introduced by Lossy Compression of 
Checkpoint
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PlasComCM	
• Compression	tolerance	of	𝜀=10-6	
• Compression	ratio	of	~x7

Nek5000	
• Compression	tolerance	of	𝜀=10-7	
• Compression	ratio	of	~x3

J.	Calhoun	et	al	Exploring	the	feasibility	of	lossy	compression	for	PDE	simulations	
IJHPCA,	2018



Can Cope with Occasional Bit-Flips

• Algorithm Based Fault Tolerance (ABFT): Can build 
algorithm specific fault detectors, using properties of 
the algorithm 

• ML based fault detection: Can learn to detect error 
patterns for a specific solver (anomaly detection) 

• Hypothesis: Errors either do not affect too much final 
solution or are easy to detect.
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CONCLUSION
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Future

• The end of Moore’s Law is not the end of supercomputing 
• Plenty of important problems can benefit from continued increase in 

performance 
• Increasing performance will require increasing specialization, and 

moving away from commodity technologies 
– Different, specialized hardware 
– Specialized software 
– Focus on performance, not ease of programming 

• Specialization is affordable when device technology is stable and 
justifiable due to the benefits from improved performance 

• Think of a supercomputer not as a computer made large, but as a 
unique, expensive scientific instrument that cost billions, is used over 
decades, and require unique skills in order to use efficiently
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Questions?


