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THE JURASSIC ERA OF
SUPERCOMPUTING

I Those who cannot remember the past are
illinois.edu condemned to repeat it. (Santayana) 2



Cray 1

* Vector supercomputer

* 1976

* 12.5 nsec clock

* 160-250 MFLOPs

1 Mword memory

« ~250,000 ECL gates

* Freon cooling

« 115 kW (not including cooling and I/0)
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The End - Cray 3

1993

GaAs gates

2.2 nsec

~1.9 GFLOPs

up to 2 GW

Immersive fluoerinert cooling

16 Gflops (?)

Was never sold (Cray went bankrupt)
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The 1990 Big Extinction: The Attack of the
Killer Micros

(Eugene Brooks, 1990)

Shift from bipolar vector machines & to clusters of MOS micros
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The 1990 Big Extinction: The Attack of the
Killer Micros

(Eugene Brooks, 1990)

Shift from bipolar vector machines & to clusters of MOS micros

* Roadblock: bipolar circuits leaked too much current - it became too hard
to cool them (even with liquid nitrogen)

« MOS was leaking very little — did not require aggressive cooling
« MOS was used in fast growing markets: controllers, workstations, PCs
* MOS had a 20 year history and clear evolution path (*Moore’s Law”)

 MOS was slower (good enough disruptive technology — Christensen)
— Cray C90 vs. CM5 in 1991: 244 MHz vs. 32 MHz
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THE AGE OF THE MAMMALS:
MOORE'’S LAW

illinois.ed



#transistors
per chip
doubling every
two years
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25 Years = 106: from 200 Gflops to 200 Pflops

1. Ride Moore’s Law — use chips with more and more
transistors (~x104)
2. Run them faster (~x102)
— that stopped > 10 years ago
3. Build bigger (and more expensive) machines (~x10)
4. Use mass-produced components wherever possible

— So as to be on the same cost-performance curve as mass-
produced devices and software

* Over the years, customization has decreased! (no
specialized OS, no specialized networks...); trend
continues, with cloud technologies

— Efficiency has decreased!
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Moore’s Law

* Not a law of nature, but of economics:

The cost per transistor is minimized by

doubling the number of transistors per chip

every two years.

« Achieved by technological progress and
by increasing manufacturing volumes

* Due to growth in market size AND
increased industry consolidation

* 20 companies produced 130 nm
chips; only 4 produce ~10 nm chips:
TSMC, Global Foundries, Samsung
and Intel
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Moore’s Law is Dying

Technological wall reached at ~5nm (number of atoms
per gate too small)

Continued evolution is increasingly expensive (both
non-recurring costs and manufacturing costs)

— Consolidation is not an option anymore

Performance gains from continued miniaturization are
decreasing

Deployment of new silicon generations has slowed
down

ois



WHAT NEXT?
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Evolution: Faster and/or Lower Power Gates

 Goal: Lower
speedxenergy

product

* No technology offers
significant
advantage over
CMOS

« ~10 year gap from
device in lab to
manufactured chip
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Revolution: Totally Different Technology

A Taxonomy for Nano Information Processing Technologies

No technology is
ready for prime
time; many will fai

Many (e.g.,

Data Representation

qu?ntl)'lml analI:Og Analog Patterns Quantum state
OptICS) are no - Z 4
general-purpose Device Spintronics Quantum

=

SETs Molecular

Ferromagnetic

Need to exploit
opportunities
above device level

P

/Material Carbon || Strongly correlated mat'ls | A58

Silicon Ge & llI-V mat'ls

Nanostructured mat'ls

Spin orientation |

Strongly correlated
electron state

Electric charge Molecular state

(ITRS 2013)
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PACKAGING & COOLING
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Increase Density and Improve Interchip
Communication

Crossing chip
boundaries is
slow and
energy-
expensive

(Kogge & Shalf, Exascale Computing Trends: Adjusting to the "New Normal"' for Computer Architecture
Computing in Science and Engineering Nov 2013)
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multi chip module
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Technologies

printed circuit board

Can build larger tightly-coupled
system

Lower design and manufacturing
costs (better yield)

Easier customization

vertical packaging

chiplets on silicon interposer

(GaTech)
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ARCHITECTURE
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Processor Specialization & Adaptation
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Processor Specialization & Adaptation

« Dynamically reconfigurable hardware (heterogeneity in
time)
— We control today frequency at chip level

— Will control frequency/power for individual components
(cores, memory controllers) and will be able to gate
them

— May use FPGAs
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Processor Specialization & Adaptation

« Dynamically reconfigurable hardware (heterogeneity in
time)
— We control today frequency at chip level

— Will control frequency/power for individual components
(cores, memory controllers) and will be able to gate
them

— May use FPGAs
* Specialized accelerators (heterogeneity in space)
* Specialized memories (ibid)
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(Hameed et al, Understanding Sources of Inefficiency in

General-Purpose Chips. CACM 10ct 2011)

ASIC vs. Software (H.264 encoder)

@ RISC @ SSE/GPU @ Mage O ASIC
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Main contribution of ASIC

is to reduce overheads
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instruction fetch/
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Bandwidth (GB/s)

(Peng, et al, Exploring the Performance Benefit of

Hybrid Memory System on HPC Environments. IPDPSW 2017)

KNL: DDR4 vs. MCDRAM (HBM)
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Remarks (1)

Specialized hardware has less of a handicap with the end
of Moore’s Law

— One design has longer lifetime
— Can use “dark silicon”

« ASIC - Application-Specific Integrated Circuit, is not an

illin

option for HPC (too many apps); we can use algorithm
specific or computation-pattern specific chip

— E.g., FFT or Molecular Dynamic accelerators

How many distinct accelerators are needed to cover a
high fraction of scientific computing cycles?
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Issues (2)

« Hardware components are not all equal and change over time (power
management, fault tolerance)

« Applications are increasingly dynamic and irregular

« How do you map an evolving computation onto a heterogeneous,
evolving platform?

 Current trend:
— Higher level, “hybrid dataflow” type code
« codelets and dependencies
« with data reuse - hence can express locality

— Intelligent runtime that maps codelets to resources and event-driven
scheduler

« Legion (Aiken), Parsec (Bosilca)...

« Need more asynchronous algorithms and better support for producer-
consumer synchronization in hardware and firmware
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COMPILER &RUNTIME
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 Compilers do not
properly map code to
hardware, even in the
simplest case
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Issue

4kx4k Matrix product time

Python I, 25552.48
Java [ 237268
C N 542.67
Parallel loops N 69.8
Divide&Conquer I 38
Vectorization l1.1

AVX intrinsics 0.41 N

0.10 1.00 10.00 100.00 1,000.00  10,000.00 100,000.00

(Leiserson et al, There's Plenty of Room at the Top)
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Possible Solutions

 “"Elbow grease” (hard work)

« Autotuning: search for optimal code configuration
* Interactive autotuning?

* Application of ML?

* Need to collect training data in a much more extensive
and systematic manner!
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ALGORITHMS
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Algorithmic Improvements Often Exceed
Moore’s Law Contribution

O(n) ,
5 Progess in TSP
10 T T T T
2004: 24978 cities

10'F Branch-and-Cut
3
5
S 10l
o
el
£
=
p=d

107} Moore's Law

2.3
O(n ) 1954: 49 cities
! ?950 1 QIGO 1 9I70 1 9I80 1 9I90 20IOO 2010
Year
(Sven Leyffer)
][ Poisson solver n=64x64x64
Traveling Salesman Problem

(A SCIENCE-BASED CASE FOR LARGE-SCALE SIMULATION
illinois.edu DOE SC 2003)
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Is There Still Room for Improvements?

* A lot, for exponential optimization problems (such as
TSP)

* A lot, for aleatoric systems (estimate probability
distribution - infinite dimensional space)

* Much, even for problems where we seem to be at the
end of the road — as we got to linear complexity

illinois.edu
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What is Problem Size n?

« Consider a PDE iterative solver

— Can use meshes of different resolutions

— Can use adaptive meshes

— Can use lower precision arithmetic

— Can compress data

— Can allow for occasional bit flips

— Can leverage knowledge of what the output is used for
« Can sample, for aleatoric problems

« How many bits are needed to solve a particular problem, and
how stable these bits need be?
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illino

Lower Precision Arithmetic

Can run at least twice as fast with 32 bit arithmetic
rather than 64 bits

—Twice as many floating point operations, when using
vector operations

—Twice as many operands per memory access
— Twice cache capacity
—~1/3 energy consumption



5.000000

0.000000

M Double,sca M Single, sca i Double,vec M Single, vec

4.282420

3.145814

2SS

Energy consumed by inexact
Newton solver of Rosenbrock
Equation ( € = 10-5)
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1.234253

(Leyffer et a. IDoing Moore with Less--Leapfrogging Moore’s
Law with Inexactness for Supercomputing. arXiv Oct 2016)

Use Lower Precision

B faseve B Annvestment N Apmaring

Enargy (Joules)

Toaw

Run single-precision, next double
precision ( &= 10-13)

Reinvest energy saved by using lower
precision in order to reduce error

32



Error Introduced by Lossy Compression of

N truncation crror —— p-momenta
10 density cnergy
——  r-momenta
2107
]
< 10"
10
0 10000 20000 30000 40000  S0000  &0DOO 70000
Time-step

PlasComCM
* Compression tolerance of €=10-6

* Compression ratio of ~¥x7
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Nek5000
* Compression tolerance of €=10-7

* Compression ratio of ¥x3

J. Calhoun et al Exploring the feasibility of lossy compression for PDE simulations

IJHPCA, 2018



Can Cope with Occasional Bit-Flips

* Algorithm Based Fault Tolerance (ABFT): Can build
algorithm specific fault detectors, using properties of
the algorithm

* ML based fault detection: Can learn to detect error
patterns for a specific solver (anomaly detection)

* Hypothesis: Errors either do not affect too much final
solution or are easy to detect.



CONCLUSION
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Future

* The end of Moore’s Law is not the end of supercomputing

* Plenty of important problems can benefit from continued increase in
performance

* Increasing performance will require increasing specialization, and
moving away from commodity technologies

— Different, specialized hardware
— Specialized software
— Focus on performance, not ease of programming

* Specialization is affordable when device technology is stable and
justifiable due to the benefits from improved performance

* Think of a supercomputer not as a computer made large, but as a
unique, expensive scientific instrument that cost billions, is used over
decades, and require unique skills in order to use efficiently
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