Parsl: Developing Interactive Parallel
Workflows in Python using Parsl

Kyle Chard (chard@uchicago.edu)

Yadu Babuji, Anna Woodard, Zhuozhao Li, Ben Clifford,
lan Foster, Dan Katz, Mike Wilde, Justin Wozniak

http://parsl-project.org

mailto:chard@uchicago.edu

Parsl: Interactive parallel scripting in Python

Annotate functions to make Parsl|

apps
* Python apps call Python functions
« Bash apps call external applications

Apps return “futures”: a proxy for a
result that might not yet be available

Apps run concurrently respecting
data dependencies.
Natural parallel programming!

Parsl scripts are independent of

where they run. Write once run
anywhere!

#parsl

pip install parsl

@python_app
def hello ():
return 'Hello World!'

@ python
print(hello().result())

Hello World!

@bash_app

def echo hello(stdout='echo-hello.stdout"):
return 'echo "Hello World!"'

echo_hello().result()

FFFFFFFFFFFFFFFFFFFF

with open('echo-hello.stdout', 'r') as f:
print(f.read())

Hello World!

Creating dynamic dataflows

Parsl creates a dynamic
graph of tasks and their

data dependencies
e Implicit based on shared
input/output between apps

Tasks are only executed
when their dependencies
are met

Tasks without shared
dependencies execute
concurrently

#*parsl

LandUse Colorize

Assemble

Parsl in action: dynamic dataflow execution

y @ python’

r

5= Frr— =

Data servers &
globus

Extreme Science and Engineering
Discover y Environmen t

_-2""‘pa rsi 4

Parsl is Python

#*parsl

plip3 install parsl

w Search projects Q

Use Python libraries et052
natively A —

Stage Python data
transparently

Integrates with |
Python ecosystem o

Simple data dependent workflows in Python

0.5.1

0.5.0

0.5.0a1

Parsl scripts are execution provider and
execution model independent

The same script can be run locally, on grids, clouds, or
supercomputers

A single script may use many execution providers

— Local, Cloud (AWS, Azure, private), Slurm, Torque, Condor,
Cobalt

A single script may use various execution models
— Threads, pilot jobs, extreme scale

Configuration file describes how to use resources

"

— -

RESS

Open Science Grid

N
| Eﬁ ssiramazon
.! l l:jj we

uF webservices

#*parsl

Separation of code and execution environment

@python_app(executors=['midway’'])
def midway():

L] -]
from libsubmit.channels import SSHChannel return 'I run on midway
from libsubmit.providers import SlurmProvider

jmport parsl @bash_app(executors=['local'])
from parsl.config import Config def local:

from parsl.executors.ipp import IPyParallelExecutor . " "
from parsl.executors.threads import ThreadPoolExecutor return 'echo "I run local l}’

config = Config(
executors=[

IPyParallelExecutor(* P||Ot JObS On

label="midway',
provider=SlurmProvider (Ei (:leE;tEBr
'westmere',
channel=SSHChannel(
hostname='swift.rcc.uchicago.edu',
username="'annawoodard'

)

max_blocks=1000,

nodes_per_block=1,

tasks_per_node=6,

overrides='module load singularity; module load Anaconda3/5.1.0; source activate parsl_py36'

)
)

ThreadPoolExecutor (label="local', max_threads=2) < Local threads

1,
)

parsl.load(config)

. * Config format for Parsl 0.6
parsl 7

Extreme scale execution on Theta

4K Nodes (256K cores) for 72 hours in Singularity containers

c11-0 ¢10-0 c9-0 c8-0 c7-0 c6-0 c5-0

c11-1 c10-1 ©9-1 c8-1 c7-1 c6-1 c5-1
258 Nodes 4000 Nodes
105 c0-0c1s10n1

Total Running Jobs: 5

Job Id Project Nodes v Start Time ~ Run Time © Walltime = Queue Mode
274219 LSSTADSP_DESC 4000 10:31:47PM 00:02:19 23:59:00 default script
274776 HHPMT_4 256 6:34¢:50PM 03:59:15 06:00:00 default script
275468 LQCD_VeloC 1 10:24:38 PM 00:09:27 01:00:00 debug-cache-quad script
275453 OF_ICING 1 9:53:46 PM 00:40:19 01:00:00 debug-cache-quad script
275467 Intel 1 10:19:44 PM 00:14:22 00:30:00 debug-cache-quad interactive

SNan

#*parsl " 8

Interactive supercomputing with Jupyter
notebooks

Sca I a b I e i nte ra Ct ive : Jupyter First-Tutorial-Start-Here (autosaved) ~

File Edit View Insert Cell Kermel Help Not Trusted | Python 3 O

Computing. Run Ce”s’ 4% & B 4 M E[C|mmam v =
in parallel on large- Parst Tutori

Parsl is a native Python library that allows you to write functions that execute in parallel and tie them together with dependencies to create workflows. Parsl
wraps Python functions as "Apps” using the @App decorator. Decorated functions can run in parallel when all their inputs are ready.

S C a I e r e S O u r C e S For more comprehensive documentation and examples, please refer our documentation

In []: # Import Parsl
import parsl
from parsl import *

DataFlowKernal

I ra n S p a re n t p a S S Parsl's DataFlowKemel acts as an abstraction layer over any pool of execution resources (e.g.. clusters, clouds, threads).

In this example we use a pool of ihreads. fo facilitate local parallel exectuion.
In []: # Let's create g pool of threads to execute our functions
ro u g O workers = ThreadPoolExecutor(max_workers=4)
We pass the workers to the DataFlowKernel which will execute our Apps over the workers.
thentication tokens
Hello World App

dfk = DataFlowKernsl{workers)
.

As a first example let's define a simple Python function that returns the string 'Hello World!'. This function is made into a Parsl App using the @App decorator.
I n u p y e r u The decorator specifies the type of App ('python'['bash') and the DataFlowKermel object as arguments

In []: # Here we define our first App function, a simple python app that returns a string
@app('python', dfk)
def hello ():
return ‘'Hello World!®

app_future = hello()

parsl 9

Parsl provides transparent (wide area) data
management

. . parsl file =
Implicit data movement File (globus://EP/path/file)
to/from repositories, laptops,
supercomputers, ...
Globus for third-party, high
performance and reliable data &
transfer — —
* Support for site-specific DTNs
N
N 0 [
HTTP/FTP direct data J O O
download/upload m

Foarsl www.globus.org 10

Parsl tutorial

Running the tutorial online:
— Binder: https://mybinder.org/v2/gh/Parsl/parsl-tutorial/master

Running the tutorial on Blue Waters

— Set up Parsl and download tutorial
e module load bwpy
e pip install --user parsl==v0.6.2-al
e git clone https://github.com/Parsl/parsl-tutorial

e git checkout bluewaters
— Execution options
e Download code and run in terminal

e Execute notebook on Blue Waters
— https://bluewaters.ncsa.illinois.edu/pythonnotebooks

e Execute notebook remotely (e.g., laptop) using Blue Waters

#*parsl 11

https://mybinder.org/v2/gh/Parsl/parsl-tutorial/master
https://github.com/Parsl/parsl-tutorial

Large-scale applications using Parsl

Machine learning to predict
stopping power in materials

Protein and biomolecule
structure and interaction

Information extraction to
discovery facts in
publications

Materials science at the
Advanced Photon Source

Cosmic ray showers as part
of QuarkNet

Weak lensing using sky
surveys

© e ©66 66 ©

Machine learning and data
analytics

Red indicates higher stati
confidence in data
12

#*parsl

Summary

Parsl takes a highly successful parallel scripting model and brings
it to Python

— No porting of existing scripts to other languages

— Support for both Python and external apps

— Implicit and dynamic dataflow from data dependencies

Applied to numerous MTC and HPC application domains and
used on many clusters and supercomputers

Deep integration with growing SciPy ecosystem

Workflow through implicitly parallel dataflow is

productive for applications and systems at many scales,
including on highest-end system

#*parsl 13

Questions?

http://parsl-project.org

parsl-project.slack.com

88| THE UNIVERSITY OF

% CHICAGO

A
Argonne

7 1\ U.S. DEPARTMENT OF NATIONAL LABORATORY

e

