How to Build & Package
Open-Source Software (OSS)

Blue Waters Webinar Series

Prentice Bisbal

Princeton Plasma Physics Laboratory
February 6, 2019

| PSpF=mF=mE PRINCETON 'l PRINCETON
PPPL e UNIVERSITY

Objectives

Teach how you how to compile and install open-source software (OSS)
Provide an overview of the process
Identify common issues and how to deal with them
Provide advice for those of you writing OSS that will be compiled and
installed by others
Focus on OSS that uses a configure script create with GNU Autoconf
Focus on the GCC compilers

Outline

My bio / motivation
Why this is important
Building OSS
Intro. to the build process
Background information
Environment variables
Filesystem Hierarchy
The compiling process
The configuration process
The make && make install
Additional optional steps
make check
make clean
Tips for packaging OSS

My background

BS in Chemical Engineering (not CS)

Linux System administrator / HPC Specialist

20 years of experience

Installed OSS thousands of times

Significant experience supporting users

Summer Program in Computational Astrophysics (2009)
Students required to build all the software themselves
Mailing list for students to help each other
Most-dominant topic: building the software
Broke down explanation of build process step-by-step for students
Very positive feedback from students.

Why do you need to know how to build OSS?

Computational software is one of the tools-of-the-trade for computational
scientists. Having access to the latest or best tools can help you be more
productive.

Most Linux distros provide little-or-no scientific software

May not have adequate support staff at home institution to install
software you need in a timely manner

May want to have software on your laptop for working at home or when

travelling.

Why should you care about packaging OSS?

* Only necessary for those who write code
* Beyond “publish or perish”: how often is your research cited?

Make code

easier to build \
More resources More likely to
for development be installed

More funding I;LOI;: tt:lg

\ More likely /

to be cited

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 6

The “Open-Source 5-step”

tar xvf foo-1.2.3.tar.gz But...

cd f00_1.2.3/ Running configure and building
. in source directory no longer

'/Conflgure proper practice

make How do you tell it where to

make install install the software?

How do you enable/disable
different features?
What if something goes wrong?

But first, some prerequisites

1. Environment variables
2. The filesystem hierarchy
3. The compiling process

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 8

Environment variables

Environment variables may need to be set before starting the build process, and
will need to be set afterwards.

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 9

Environment variables

Global variables available to a shell and its child processes
Names are typically in ALL CAPS
Examples: PATH, HOME, USER
Programs often look at environment variables to determine how to run
How to set an environment variable
Bash -> export
csh/tch -> setenv

Can be set in login scripts (.bashrc, .bash_profile, .cshrc, .login, etc.)

Environment variables

* Configure will look at environment variable to determine desired behavior

« CC

© CXX

- CPP

« FC

* CFLAGS

* CXXFLAGS
* CPPFLAGS
© etc.

“ Use configure --help to see list of environment variables for a specific

application

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 11

Environment variables

Certain environment variables will need to be set after installing software
before you can use it:

PATH

LD_LIBRARY_PATH

MANPATH

Other application-specific variables
These variables can be defined in your login scripts so they are set
correctly every time you login or start a new shell
Environment modules can be used to set these correctly

Environment variables

Demos

* env and printenv commands
> hello.sh

« ./configure --help

* edit .bashrc to change path

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 13

Linux Filesystem Hierarchy Standard (FHS)

Since most building issues are related to search path issues, understanding
where files are most like to be found can help resolve these issues.

Also, when installing software, it is best to install software in locations
consistent with existing standards.

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 14

Linux Filesystem Hierarchy

The Filesystem Hierarchy Standard (FHS) is an industry standard most
Linux distros adhere to.

https://refspecs.linuxfoundation.org/fhs.shtml

“Local placement of local files is a local issue, so FHS does not attempt to
usurp system administrators.”

* For example, all locally install software at PPPL is installed in /usr/pppl
* Some sites install to /usr/local

* Some commercial software prefers to install in /opt

'y February 6, 2019
6} Yy

Prentice Bisbal / Blue Waters Webinar Series 15

https://refspecs.linuxfoundation.org/fhs.shtml

Filesystem Hierarchy Standard (FHS)

optional
T T T T T T T T T T T 1T 17 17 T 171 e

bin/ boot/ dev/ etc/ home/ lib/ lib64/ media/ mnt/ opt/ proc/ root/ run/ sbin/ srv/ sys/ tmp/ usr/ var/

| |
I I I I
opt/ X11/ sgml/ xml/ modules/

floppy/ cdrom/ cdrecorder/ zip/

bin/ doc/ man/ include/ info/ lib/

bin/ include/ lib/ lib64/ libexec/ local/ sbin/ share/ src/ | | | | | | | | | | | | |

. Linux OS specific

account/ cache/ crash/ games/ lib/ lock/ log/ mail/ opt/ run/ spool/ tmp/ yp/

I I I I I I I editor/ color/ hwclock/ misc/
color/ dict/ man/ misc/ ppd/ sgml/ xml/

bin/ etc/ games/ include/ lib/ 1ib64/ man/ sbin/ share/ src/ fonts/ man/

lpd/ rwho/ cron/

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 16

LInux Filesystem Hierarchy Standard

| T - | . B optional

bin/ home/ lib/ lib64/ opt/ sbin/ tmp/ usr/ .Linux 0S specific
| | |
bin/ include/ lib/
| | | | |
bin/ include/ lib/ lib64/ local/ sbin/
bin/ include/ lib/ lib64/ sbin/

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 17

Linux Filesystem Hierarchy

* Header files should be in a directory named “include”
« Jusr/include
« [usr/local/include
« [opt/include
* Other site-specific locations
* Library files should be in directories named “lib” or “lib64”

« [Jusr/lib

« Jusr/lib64

- /lib

- /[lib64

« [usr/local/lib
- Jopt/lib

* Other site-specific locations

6} February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 18

Linux Filesystem Hierarchy

* Commands should be in directories names “bin” or “shin”

« [Jusr/bin

« [usr/sbin

« /bin

* /sbin

« [usr/local/bin
« [opt/bin

* Other site-specific locations

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 19

The SHOME directory

You can do just about whatever you want in your own home directory,
including install software without needing administrative rights. This allows you
manage your own software needs on systems where you do not have
administrative rights.

My recommendation, install software in your home directory in this way:
SHOME/apps/<app. name>/<app. version>

Examples:

/home/prentice/apps/fftw/3.3.8
/home/prentice/apps/git/2.16.2

Linux Filesystem Hierarchy

/home/prentice

apps/
3.3.8/ 2.16.2/
bin/ include/ lib/ share/ bin/ lib/ libexec/ share/

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 21

Tying it all (so far) together

FFTW_DIR=$HOME/apps/fftw/3.3.8
GIT_DIR=$HOME/apps/git/2.16.2

export PATH=$GIT_DIR/bin:$FFTW_DIR/bin:$PATH

export MANPATH=SGIT_DIR/share/man:SFFTW_DIR/share/man:SMANPATH
export LD_LIBRARY_PATH=SGIT_DIR/1ib:SFFTW_DIR/1lib:SLD_LIBRARY_PATH
export CPATH=SFFTW_DIR/include:SCPATH

export C_INCLUDE_PATH=SFFTW_DIR/include:SC_INCLUDE_PATH

The compiling process

Understanding the compiling process, and what errors happen at each stage are
key to troubleshooting the build process.

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 23

The Compiling Process

[Header files]

l Pre-processed Assembly Object
source code language code
Source code —»| Preprocessor »| Compiler ——»| Assembler 4>[Object file]
Obiject file
p N Final executable
Object file Linker _oor
.) I library file
Obiject file

[Library files]

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 24

The compiling process

You execute the compiler command (gcc, g++, etc.) and the compiler calls
the preprocessor, the compiler itself, the assembler, and the linker as
necessary.

The -I switch can be used multiple times to specify the paths to header
files

The -L switch can be used multiple times to specify the paths to library
files

The -1 switch is used to specify the names of libraries to link to (
-1<library name>)

The order of libraries listed with the -1 switches is important - the library
that supplies a function should come after any libraries that call that
function

The compiling process

The GCC preprocessor will look at the following environment variables for
header file search paths:

CPATH - header files for all languages
C_INCLUDE_PATH - header files for C
CPLUS_INCLUDE_PATH - header files for C++
OBJC_INCLUDE_PATH - header files for Objective C

The GCC linker will look at the LIBRARY_PATH environment variable for
library search paths

The compiling process

Example:
S gcc -0 example -ISHOME/apps/fftw/3.3.8/include \
-LSHOME /apps/fftw/3.3.8/1ib -1fftw3 example.c

Is equivalent to:

CFLAGS="-ISHOME /apps/fftw/3.3.8/include”
LDFLAGS="-L$HOME /apps/fftw/3.3.8/1ib -1fftw3"

Or

CPATH=$SHOME /apps/fftw/3.3.8/include
LIBRARY_PATH=/SHOME /apps/fftw/3.3.8/1ib

Note: LIBRARY_PATH only handles path elements (-L), not individual libraries (-1)

Preprocessor errors - No such file or directory

Example:
S gcc -o example example.c
example.c:2:10: fatal error: example.h: No such file or directory

#include "example.h”

How to fix:

Make sure the required package is installed (the “-dev” or “-deve

packages include the header files, or

Find the location of header files, and then
Specify the location with the -l switch to the compiler, or
Add the path the environment variables used by the C preprocessor
like CPATH or C_INCLUDE_PATH

|II

Linker errors - cannot find -I<librayname>

Example:
§ gcc -o myname -I./include -1lmyname myname.c
/usr/bin/1ld: cannot find -lmyname

How to fix:

Make sure the required package is installed on your system (this is
especially true for static libraries)
Find the correct location of the library file and then
Specify the location to directory containing the library with the -L
switch, or
Add the directory containing the library to the LIBRARY_PATH
environment variable

Linker errors - unresolved symbols

Example:

S gcc -o liborder -I ./include -L ./lib -1function2 -1function3
liborder.c

./1lib/1libfunction2.so: undefined reference to “functionl'
collect2: 1d returned 1 exit status

How to fix:

Do an internet search to see what library provides the symbol, you might
missing a library from your compiler command

Make sure the version of the library is correct. The symbol (function) may
be new, or obsoleted.

Check the order of your libraries in your command.

Demos

* Using -I switch (example.c)

« Setting CPATH (example.c)

* Setting C_INCLUDE_PATH (example.c)
* Using -L switch (liborder.c)

< Setting LIBRARY_PATH (liborder.c)

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 31

The “Open-Source 5-step”

tar xvf foo-1.2.3.tar.gz
cd foo-1.2.3/
.Jconfigure

make

make install

a0~

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 32

The configure script

Created by the software’s developer(s) using GNU Autoconf
Most popular OSS configuration method
Takes arguments to customize how your software is built

Specify installation location

Enable/disable features

Specify correct paths to dependencies
Checks your environment to determine if prerequisites are available
Creates the Makefiles that will guide the rest of the build process with the
correct settings

The configure script - tips

Always check README and INSTALL files if provided
Always run configure --help to see all available options, and what
environment variables configure will look at
Common options to set:
--prefix
--enable-shared
--enable-static
--disable-silent-rules
Good idea to pipe output to a log file using ‘tee’:

S ./configure .. 2>&1 | tee configure.log

Executing the configure script - example

./configure \
--prefix=SHOME/apps/fftw/3.3.8 \
--disable-silent-rules \
--enable-shared \
--enable-static \
--enable-mpi \
--enable-openmp \
--enable-threads \
CC=gcc \

MPICC=mpicc \
F77=gfortran \
2>&1 | tee compile.log

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 35

make

This step actually calls the compiler to compile the source code

* No arguments necessary
* Use ‘make -j <number>"to run in parallel (optional)
* Good idea to pipe output to log file using ‘tee’:

S make 2>&1 | tee make.log

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 36

make check (optional)

* Makes sure application produces the correct results

* Not every package provides this function

* Test results are not always reliables - see README and INSTALL documents
* XFAIL = Expected Failure

* Sometimes make test instead of make check

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 37

make clean (optional)

* Used to provide a “clean start” if need to start over
* Removes all object files and executables

© Make distclean provides even more thorough cleaning
* Removes configuration information, etc.

* Not every package provides these features

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 38

make install

* Copies the files to the location(s) you specified when you ran configure
* Sets the correct permissions

* Needs to be run as root, unless you are installing into your home directory.
* Good idea to pipe output to log file using ‘tee’:

S make install 2>&1 | tee install.log

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 39

Demo

Go through process of building Hello 2.10

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 40

Packaging software

My observations on scientific OSS packaging

Much harder to manage than general-purpose OSS

Poor or no installation documentation

No configuration process

Files must be manually copied to installation location

All file types (headers, libraries, binaries and data) in a single directory
No version information

Indecipherable filenames

Provide Consistent Version information

Why?
It helps you keep track of your updates more easily
Helps the user determine whether they’re using the latest version
Helps the user determine if bug reports or documentation applies to
their version
Several different versioning schemes commonly used:
Major.minor.bugfix (ex: 12.03.1)
Year.minor.bugfix (ex. 2018.01.03)
Choose one and stick with it.
See for information on Semantic Versioning
Should be easy to check version number with a command (--version
switch, etc.)
Downloadable tarballs should have version information in filename
(master.tar.gz is NOT an acceptable filename)

https://semver.org/

Follow Linux Filesystem Hierarchy Standard

* Why?

* To follow standard conventions

* To put files in correct locations for required read-write privileges
- Additional file locations for developers

© [tmp

« Jvar/tmp
« Jvar/log
< Jvar/lib

« /var/run

* SHOME (for dot files)

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 43

Effective Installation Documentation

* Why?
* Makes it easier for the user to install
* README and/or INSTALL file
* README - general information about application, new features
(release notes)
* INSTALL - detailed installation instructions
* Should be readable from the command-line
* ASCII text
* Do not rely on web pages

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 44

Follow existing standards and convention

Why?
* Will make code maintenance easier
* Fosters collaboration
* Fosters portability
Organize files in a hierarchy
Code formatting (indenting, etc.)
Variable naming
The GNU Coding standards would be a good candidate

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 45

Configuration and Installation Automation
Tools

* Why?
* Makes it easier for you to make it easier for them
* Use a tool to automate configuration/installation
* GNU Autoconf is by far the most popular
* CMake is the second most popular, but far behind GNU Autoconf
* SCons

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 46

Resources for building OSS

* Filesystem Hierarchy Standard:
http://refspecs.linuxfoundation.org/fhs.shtml

* “An Intro to GCC” by Brian Gough:
http://www.network-theory.co.uk/docs/gccintro/

* GNU Coding Standards, Section 7.1: How Configuration Should Work:
https://www.gnu.org/prep/standards/html_node/Configuration.html#Con

figuration

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 47

http://refspecs.linuxfoundation.org/fhs.shtml
http://www.network-theory.co.uk/docs/gccintro/
https://www.gnu.org/prep/standards/html_node/Configuration.html#Configuration
https://www.gnu.org/prep/standards/html_node/Configuration.html#Configuration

Resources for Packaging OSS

* Filesystem Hierarchy Standard:
http://refspecs.linuxfoundation.org/fhs.shtml

* GNU Coding Standards:
https://www.gnu.org/prep/standards/

* GNU Autoconf:
https://www.gnu.org/software/autoconf/autoconf.html

* GNU Automake:
https://www.gnu.org/software/automake

* Information for maintainers of GNU software:
https://www.gnu.org/prep/maintain/

* GNU Hello
https://www.gnu.org/software/hello/

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 48

http://refspecs.linuxfoundation.org/fhs.shtml
https://www.gnu.org/prep/standards/
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/automake
https://www.gnu.org/prep/maintain/
https://www.gnu.org/software/hello/

Resources for Packaging OSS

* “How To Make Package Managers Cry”, by Kenneth Hoste (FOSDEM 2018)
https://www.youtube.com/watch?v=NSemlYagjlU

* CMake:
https://cmake.org/
* SCons

https://scons.org/

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series 49

https://www.youtube.com/watch?v=NSemlYagjIU
https://cmake.org/
https://scons.org/

Questions / Feedback

“Feedback is a gift”

Please e-mail questions and feedback to pbisbal@pppl.gov

@ February 6, 2019 Prentice Bisbal / Blue Waters Webinar Series o0

