
exascaleproject.org

E4S: Extreme-Scale Scientific Software Stack

https://e4s.io

Sameer Shende
Performance Research Laboratory, OACISS, U. Oregon

sameer@cs.uoregon.edu

Tutorial, NCSA Webinar.

 2

Extreme-scale Scientific Software Stack (E4S)
https://e4s.io

§  E4S is a community effort to provide open source software packages for

developing, deploying, and running scientific applications on HPC platforms.
§  E4S provides both source builds and containers of a broad collection of HPC

software packages.
§  E4S exists to accelerate the development, deployment and use of HPC

software, lowering the barriers for HPC users.
§  E4S provides containers and turn-key, from-source builds of 80+ popular HPC

software packages:
§  MPI: MPICH and OpenMPI
§  Development tools: TAU, HPCToolkit, and PAPI
§  Math libraries: PETSc and Trilinos
§  Data and Viz tools: Adios, HDF5, and Paraview

 3

Extreme-scale Scientific Software Stack (E4S)
https://e4s.io
•  Spack [http://spack.io] is the primary means for software delivery

•  SDKs: collection of related ECP ST products where coordination across package teams will
improve usability and practicies, and foster community growth among teams that develop
similar and complimentary capabilities. An SDK involves several products.

•  Containers of pre-built binaries of ECP ST products.

•  Container runtimes supported
–  Docker: Dockerhub: exascaleproject/sdk:AHM19

–  Charliecloud
–  Shifter
–  Singularity
–  Inception at NCAR

•  VirtualBox Open Virtualization Appliance (OVA) image that contains these runtimes

•  MPI replacement strategies to use native network interconnect

 4

What are containers

•  A lightweight collection of executable software that encapsulates everything
needed to run a single specific task
–  Minus the OS kernel
–  Based on Linux only

•  Processes and all user-level software is isolated
•  Creates a portable* software ecosystem

•  Think chroot on steroids

•  Docker most common tool today
–  Available on all major platforms
–  Widely used in industry
–  Integrated container registry via Dockerhub

* Container slides from: Andrew Younge, Sandia, “Getting Started with Containers on HPC”, ISC-HPC 2019 tutorial

 5

Hypervisors and Containers
•  Type 1 hypervisors insert layer below host OS
•  Type 2 hypervisors work as or within the host OS

•  Containers do not abstract hardware, instead provide “enhanced chroot” to
create isolated environment

•  Location of abstraction can have impact on performance

•  All enable custom software stacks on existing hardware

 6

Background

•  Abstracting hardware and software resources has had profound impact on
computing

•  Virtual Machines to Cloud computing in the past decade
–  Early implementations limited by performance
–  HPC on clouds: FutureGrid, Magellan, Chameleon Cloud, Hobbes, etc
–  Some initial successes, but not always straightforward

•  OS-level virtualization a bit different
–  User level code packaged in container, can then be transported
–  Single OS kernel shared across containers and provides isolation
–  Cgroups traditionally multiplexes hardware resources
–  Performance is good, but OS flexibility is limited

 7

Containers in Cloud Industry

•  Containers are used to create large-scale loosely coupled services
•  Each container runs just 1 user process – “micro-services”

–  3 httpd containers, 2 DBs, 1 logger, etc

•  Scaling achieved through load balancers and service provisioning

•  Jam many containers on hosts for increased system utilization

•  Helps with dev-ops issues
–  Same software environment for developing and deploying
–  Only images changes are pushed to production, not whole new image (CoW).
–  Develop on laptop, push to production servers
–  Interact with github similar to developer code bases
–  Upload images to ”hub” or “repository” whereby they can just be pulled and provisioned

 8

Containers

•  Containers are gaining popularity for software management of distributed
systems

•  Enable way for developers to specify software ecosystem

•  US DOE High Performance Computing (HPC) resources need to support
emerging software stacks
–  Applicable to DevOps problems seen with large HPC codes today
–  Support new frameworks & cloud platform services

•  But HPC systems are very dissimilar from cloud infrastructure
–  MPI-based bulk synchronous parallel workloads are common
–  Scale-out to thousands of nodes
–  Performance is paramount

 9

Container features in HPC

▪  BYOE - Bring-Your-Own-Environment
▪  Developers define the operating environment and system libraries in which their application runs.

▪  Composability
▪  Developers explicitly define how their software environment is composed of modular components as

container images,
▪  Enable reproducible environments that can potentially span different architectures.

▪  Portability
▪  Containers can be rebuilt, layered, or shared across multiple different computing systems
▪  Potentially from laptops to clouds to advanced supercomputing resources.

▪  Version Control Integration
▪  Containers integrate with revision control systems like Git
▪  Include not only build manifests but also with complete container images using container registries like

Docker Hub.

 10

Container features not wanted in HPC
•  Overhead

–  HPC applications cannot incur significant overhead from containers

•  Micro-Services
–  Micro-services container methodology does not apply to HPC workloads
–  1 application per node with multiple processes or threads per container

•  On-node Partitioning
–  On-node partitioning with cgroups is not necessary (yet?)

•  Root Operation
–  Containers allow root-level access control to users
–  In supercomputers this is unnecessary and a significant security risk for facilities

•  Commodity Networking
–  Containers and their network control mechanisms are built around commodity networking (TCP/IP)
–  Supercomputers utilize custom interconnects w/ OS kernel bypass operations

 11

HPC Containers
▪  Docker not good fit for running HPC workloads

▪  Security issues
▪  Can’t allow root on shared resources

▪  Lack of HPC architecture support
▪  No batch integration
▪  Assumes local resources
▪  Assumes commodity TCP/IP

▪  Many different container options in HPC
 Shifter Singularity Charliecloud …

 12

Spack

•  E4S uses the Spack package manager for software delivery

•  Spack provides the ability to specify versions of software packages that are and are not
interoperable.

•  Spack is a build layer for not only E4S software, but also a large collection of software tools
and libraries outside of ECP ST.

•  Spack supports achieving and maintaining interoperability between ST software packages.

•  Acknowledgement: The remaining Spack slides in this presentation are from a talk given by
the Spack PI, Todd Gamblin, CASC, LLNL.

•  Next: Motivation for Spack!

 13

Scientific software is becoming extremely complex

r-rminer

r

r-adabag

r-mass

r-lattice

r-nnet

r-rpart

r-cubist

r-e1071

r-glmnet

r-kernlab

r-kknn

r-mda

r-party

r-plotrix

r-pls

r-randomforest

r-xgboost

bzip2

cairo

freetype

zlib

glib

ncurses

pcre readline

curl

icu4c

jdk
libjpeg-turbo

libtiff

pango

tcltk

fontconfig

pkgconf

libpng
pixman

font-util

gperf

libxml2

util-macros

xz

gettext

libffi

perl

python

tar

gdbm

openssl

sqlite
cmake

nasm

gobject-introspection

harfbuzz

bison

flex

sed

m4 libsigsegv

help2man

libx11 inputproto

kbproto

libxcb

xproto

xextproto

xtrans
libpthread-stubs

libxau

libxdmcp

xcb-proto

r-caret

r-mlbench

r-car

r-nlme

r-foreach

r-ggplot2
r-plyr

r-reshape2

r-modelmetrics

r-mgcv

r-pbkrtest

r-quantreg

r-matrix

r-lme4

r-minqa

r-rcpp

r-nloptr

r-rcppeigen

r-testthat

r-crayon

r-digest

r-magrittr

r-praise

r-r6

r-matrixmodels

r-sparsem

r-codetools

r-iterators

r-gtable

r-lazyeval

r-scales

r-tibble

r-stringr

r-stringi

r-dichromat

r-labeling

r-munsell

r-rcolorbrewer

r-viridislite

r-colorspace

r-assertthat

r-rlang

r-class

r-igraph

gmp

r-irlba

r-pkgconfig autoconf

automake

libtool

r-coin

r-modeltools
r-mvtnorm

r-sandwich

r-zoo

r-survival

r-strucchange

r-multcomp r-th-data

r-data-table

R	Miner:	R	Data	Mining	Library	

dealii

adol-c

arpack-ng

cmake

zlib

openblas

openmpi

assimp
boost

gmsh oce

intel-tbb

gsl

hdf5

metis

muparser

nanoflann

netcdfnetcdf-cxx

netlib-scalapack

p4est

petsc

slepc

suite-sparse

sundials

trilinos

autoconf

m4

automake

libtool

perl

libsigsegv

gdbm

readline

ncurses

pkgconf

openssl

hwloc libxml2
xz

bzip2

gmp

netgen

tetgen

hypre

parmetis

python

superlu-dist
sqlite

glm

matio

mumps

dealii:	C++	Finite	Element	Library	

nalu

cmake

openmpi

trilinos

yaml-cpp
ncurses

openssl

pkgconf

zlib

hwloc libxml2 xz

boost

glm

hdf5

matio

metis

mumps

netlib-scalapack

openblas

netcdf

parallel-netcdf

parmetis

suite-sparse

superlu

bzip2

m4 libsigsegv

Nalu:	Generalized	Unstructured	Massively	Parallel	Low	Mach	Flow	

 14

•  Half of this DAG is external (blue); more than half of it is open source

•  Nearly all of it needs to be built specially for HPC to get the best performance

Even proprietary codes are based on many open source
libraries

ARES

tcl

tkscipy

python

cmake

hpdf

opclient

boost

zlib

numpy

bzip2

LAPACK

gsl

HDF5

gperftools papi

GA

bdivxml

sgeos_xmlScallop

rng perflib memusage timers

SiloSAMRAI

HYPRE

matprop

overlink qd

LEOS

MSlibLaser

CRETIN

tdf

Cheetah DSD

Teton

Nuclear

ASCLaser

MPI

ncurses

sqlite readline openssl BLAS

Physics Utility Math External

Types of Packages

 15

The Exascale Computing Project is building an entire ecosystem

•  Every application has its own stack of dependencies.
•  Developers, users, and facilities dedicate (many) FTEs to building & porting.
•  Often trade reuse and usability for performance.

80+ software packages x
5+ target architectures/platforms

Xeon Power KNL
NVIDIA ARM Laptops?

x

Up to 7 compilers
Intel GCC Clang XL

PGI Cray NAG
x

= up to 1,260,000 combinations!

15+ applications

x
10+ Programming Models

OpenMPI MPICH				MVAPICH				OpenMP				CUDA	
OpenACC				Dharma			Legion			RAJA				Kokkos

2-3 versions of each package +
external dependencies

x

We	must	make	it	easier	to	rely	on	others’	software!	

 16

How to install software on a Mac laptop, circa 2013

 17

How to install software on a supercomputer

c
o
n
f
i
g
u
r
e

m
a
k
e

F
i
g
h
t

w
i
t
h

c
o
m
p
i
l
e
r
.
.
.

m
a
k
e

T
w
e
a
k

c
o
n
f
i
g
u
r
e

a
r
g
s
.
.
.

m
a
k
e

i
n
s
t
a
l
l

m
a
k
e

c
o
n
f
i
g
u
r
e

c
o
n
f
i
g
u
r
e

m
a
k
e

m
a
k
e

i
n
s
t
a
l
l

c
m
a
k
e

m
a
k
e

m
a
k
e

i
n
s
t
a
l
l

1.  Download	all	16	
tarballs	you	need	

2.  Start	building!	

3.  Run	code	
4.  Segfault!?	
5.  Start	over…	

 18

•  Most supercomputers deploy some form of environment modules
–  TCL modules (dates back to 1995) and Lmod (from TACC) are the most popular

•  Modules don’t handle installation!
–  They only modify your environment (things like PATH, LD_LIBRARY_PATH, etc.)

•  Someone (likely a team of people) has already installed gcc for you!
–  Also, you can only `module load` the things they’ve installed

What about modules?

$ gcc
- bash: gcc: command not found

$ module load gcc/7.0.1
$ gcc –dumpversion
7.0.1

 19

•  Containers provide a great way to reproduce and distribute an
already-built software stack

•  Someone needs to build the container!
–  This isn’t trivial
–  Containerized applications still have hundreds of dependencies

•  Using the OS package manager inside a container is insufficient
–  Most binaries are built unoptimized
–  Generic binaries, not optimized for specific architectures

•  Developing with an OS software stack can be painful
–  Little freedom to choose versions
–  Little freedom to choose compiler options, build options, etc. for packages

What about containers?

We	need	something	more	flexible	to	build	the	containers	

 20

•  How to install Spack (works out of the box):

•  How to install a package:

•  HDF5 and its dependencies are installed
within the Spack directory.

•  Unlike typical package managers, Spack can
also install many variants of the same build.
–  Different compilers
–  Different MPI implementations
–  Different build options

Spack is a flexible package manager for HPC

$	git	clone	https://github.com/spack/spack	
$.	spack/share/spack/setup-env.sh	

$	spack	install	hdf5	

@spackpm	

github.com/spack/spack	

Visit	spack.io	

 21

•  Each expression is a spec for a particular configuration
–  Each clause adds a constraint to the spec
–  Constraints are optional – specify only what you need.
–  Customize install on the command line!

•  Spec syntax is recursive
–  Full control over the combinatorial build space

Spack provides the spec syntax to describe custom
configurations

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cxxflags="-O3 –g3” setting compiler flags
$ spack install mpileaks@3.3 os=cnl10 target=haswell setting target for X-compile
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency information

 22

`spack list` shows what packages are available

•  Spack has over 3,000 builtin package recipes.

$ spack list
==> 3041 packages.
abinit glew nalu py-fastaindex r-cairo r-viridislite
abyss glfmultiples nalu-wind py-fasteners r-callr r-visnetwork
accfft glib namd py-faststructure r-car r-vsn
ack glibmm nano py-filelock r-caret r-webshot
activeharmony glimmer nanoflann py-fiona r-category r-whisker
adept-utils glm nanopb py-fiscalyear r-catools r-withr
adios global nasm py-flake8 r-cdcfluview r-xde
adios2 globalarrays nauty py-flake8-polyfill r-cellranger r-xgboost
adlbx globus-toolkit ncbi-magicblast py-flask r-checkmate r-xlconnect
adol-c glog ncbi-rmblastn py-flask-compress r-checkpoint r-xlconnectjars
aegean gloo ncbi-toolkit py-flask-socketio r-chemometrics r-xlsx
aida glpk nccl py-flexx r-chron r-xlsxjars
albany glproto nccmp py-fn r-circlize r-xmapbridge
albert glvis ncdu py-fparser r-class r-xml
alglib gmake ncftp py-funcsigs r-classint r-xml2
allinea-forge gmap-gsnap ncl py-functools32 r-cli r-xnomial
allinea-reports gmime nco py-future r-clipr r-xtable
allpaths-lg gmodel ncurses py-futures r-cluster r-xts
alquimia gmp ncview py-fypp r-clustergeneration r-xvector
alsa-lib gmsh ndiff py-gdbgui r-clusterprofiler r-yaml
aluminum gmt nek5000 py-genders r-cner r-yapsa
amg gnat nekbone py-genshi r-coda r-yaqcaffy
amg2013 gnu-prolog nekcem py-geopandas r-codetools r-yarn
amp gnupg nektar py-gevent r-coin r-zlibbioc
ampliconnoise gnuplot neovim py-git-review r-colorspace r-zoo
amrex gnutls nest py-git2 r-combinat r3d
amrvis go netcdf py-gnuplot r-complexheatmap racon
andi go-bootstrap netcdf-cxx py-goatools r-compositions raft
angsd gobject-introspection netcdf-cxx4 py-gpaw r-convevol ragel
ant googletest netcdf-fortran py-greenlet r-corhmm raja
antlr gotcha netgauge py-griddataformats r-corpcor randfold
ants gource netgen py-guidata r-corrplot random123
ape gperf netlib-lapack py-guiqwt r-covr randrproto
. . .

 23

•  All the versions coexist!
–  Multiple versions of same

package are ok.

•  Packages are installed
to automatically find
correct dependencies.

•  Binaries work regardless
of user’s environment.

•  Spack also generates
module files.
–  Don’t have to use them.

`spack find` shows what is installed

$ spack find
==> 103 installed packages.
-- linux-rhel7-x86_64 / gcc@4.4.7 --------------------------------
ImageMagick@6.8.9-10 glib@2.42.1 libtiff@4.0.3 pango@1.36.8 qt@4.8.6
SAMRAI@3.9.1 graphlib@2.0.0 libtool@2.4.2 parmetis@4.0.3 qt@5.4.0
adept-utils@1.0 gtkplus@2.24.25 libxcb@1.11 pixman@0.32.6 ravel@1.0.0
atk@2.14.0 harfbuzz@0.9.37 libxml2@2.9.2 py-dateutil@2.4.0 readline@6.3
boost@1.55.0 hdf5@1.8.13 llvm@3.0 py-ipython@2.3.1 scotch@6.0.3
cairo@1.14.0 icu@54.1 metis@5.1.0 py-nose@1.3.4 starpu@1.1.4
callpath@1.0.2 jpeg@9a mpich@3.0.4 py-numpy@1.9.1 stat@2.1.0
dyninst@8.1.2 libdwarf@20130729 ncurses@5.9 py-pytz@2014.10 xz@5.2.0
dyninst@8.1.2 libelf@0.8.13 ocr@2015-02-16 py-setuptools@11.3.1 zlib@1.2.8
fontconfig@2.11.1 libffi@3.1 openssl@1.0.1h py-six@1.9.0
freetype@2.5.3 libmng@2.0.2 otf@1.12.5salmon python@2.7.8
gdk-pixbuf@2.31.2 libpng@1.6.16 otf2@1.4 qhull@1.0

-- linux-rhel7-x86_64 / gcc@4.8.2 --------------------------------
adept-utils@1.0.1 boost@1.55.0 cmake@5.6-special libdwarf@20130729 mpich@3.0.4
adept-utils@1.0.1 cmake@5.6 dyninst@8.1.2 libelf@0.8.13 openmpi@1.8.2

-- linux-rhel7-x86_64 / intel@14.0.2 -----------------------------
hwloc@1.9 mpich@3.0.4 starpu@1.1.4

-- linux-rhel7-x86_64 / intel@15.0.0 -----------------------------
adept-utils@1.0.1 boost@1.55.0 libdwarf@20130729 libelf@0.8.13 mpich@3.0.4

-- linux-rhel7-x86_64 / intel@15.0.1 -----------------------------
adept-utils@1.0.1 callpath@1.0.2 libdwarf@20130729 mpich@3.0.4
boost@1.55.0 hwloc@1.9 libelf@0.8.13 starpu@1.1.4

 24

•  Spack simplifies HPC software for:
–  Users
–  Developers
–  Cluster installations
–  The largest HPC facilities

•  Spack is central to ECP’s software strategy
–  Enable software reuse for developers and users
–  Allow the facilities to consume the entire ECP stack

•  The roadmap is packed with new features:
–  Building the ECP software distribution
–  Better workflows for building containers
–  Stacks for facilities
–  Chains for rapid dev workflow
–  Optimized binaries
–  Better dependency resolution

The Spack community is growing rapidly

@spackpm	

github.com/spack/spack	

Visit	spack.io	

 25

Exascale Platform Preparation

•  SDK Exascale platform preparation is focused on interoperable delivery.
•  ST products from SDKs are released in the Extreme-scale Scientific Software

Stack (E4S) [https://e4s.io].
–  E4S: a community effort to provide open source software packages for developing,

deploying, and running scientific applications on HPC platforms
•  E4S containers and Spack based builds currently support the following pre-

exascale systems:
–  Theta at ALCF (Cray XC).
–  Cori at NERSC (Cray XC).
–  Summit, Sierra, Butte, RZAnsel (IBM Power 9 AC922).
–  Linux x86_64 systems at LANL (Grizzly), Sandia (Voltrino), LLNL (Quartz).
–  Other NSF platforms including Frontera (TACC).

•  E4S preparation for future Exascale systems includes testing on AMD and
Intel systems.

**E4S is led and funded out of the PMR SDK, but is the delivery vehicle for all SDK efforts

 26

Integration and Interoperability: E4S

•  E4S is released twice a year. Two versions have been released to date and
we are planning for a release at SC19. The E4S 0.2 release supports:

–  Containers and turn-key, from-source builds of 80+ popular HPC software packages
–  37 full release ECP ST products including:

•  MPI: MPICH and OpenMPI
•  Development tools: TAU, HPCToolkit, and PAPI
•  Math libraries: PETSc and Trilinos
•  Data and Viztools: Adios, HDF5, and Paraview

–  Limited access to 10 additional ECP ST products
–  Docker
–  Singularity
–  Shifter
–  Charliecloud
–  Inception
–  Open Virtualization Appliance (OVA) for VirtualBox features Spack, E4S containers, and

support for container environments

 27

Integration and Interoperability: E4S on AWS

●  E4S AWS public image ami-063e830287b86155c (US-West-2 Oregon) has following
container runtimes:
○  Docker
○  Shifter
○  Singularity
○  Charliecloud

●  Spack with base PMR components
●  E4S full featured Singularity image

○  (exascaleproject/sdk:AHM19)
●  Used in ISC-HPC 2019 tutorials
●  Used as base image for NASA

GEOS-Chem E4S public image
●  Resources provided by AWS AI/ML

team

 28

Reproducible, Customizable Container Builds & Spack Mirrors

•  E4S provides base images and recipes for building Docker containers based
on SDKs

–  Git: https://github.com/UO-OACISS/e4s
–  Base images released (September 2019):

•  UBI 7.6 (RHEL Universal Binary Image for container builds) for x86_64
•  Centos 7.6 for x86_64
•  Ubuntu 18.04 for x86_64
•  UBI 7.6 (RHEL) for ppc64le

•  E4S provides build caches for Spack for native bare-metal as well as
container builds based installation of ST products

–  Build caches: https://oaciss.uoregon.edu/e4s
•  The build cache model can be extended to target platforms, and can be managed by

facilities staff when appropriate.

 29

E4S Build Cache Binaries

https://oaciss.uoregon.edu/e4s

 30

Reproducible Container Builds using E4S Base Images

●  PMR SDK base image (UBI 7.6) has Spack build cache
mirror and GPG key installed.

●  Base image has GCC and MPICH configured for MPICH
ABI level replacement (with system MPI).

●  Customized container build using binaries from E4S
Spack build cache for fast deployment.

●  No need to rebuild packages from the source code.
●  Same recipe for container and native bare-metal builds

with Spack!

 31

Reproducible Base Images on Dockerhub

•  x86_64
•  ppc64le
•  aarch64

•  Centos 7.6
•  Ubuntu 18.04
•  RHEL/UBI 7.6

•  ecpe4s

 32

Docker Recipes on GitHub

https://github.com/UO-OACISS/e4s

•  Base images
•  SDKs
•  E4S

 33

Spack Build Caches from E4S Base Images

●  IBM Power 9 (ppc64le) build cache
○  2.6 GB on disk
○  early stages of effort
○  Initial ARM 64 build cache is underway

●  x86_64 build cache
○  40 GB on disk

 34

Docker container of E4S

•  Using USB stick or images from https://e4s.io:
•  % gunzip –c ecp.tgz | docker load

% docker images

•  Mount home directory:

% docker –i –v $HOME:$HOME –t exascaleproject/sdk:AHM19 /bin/bash

% which spack

% cp –r /usr/local/packages/ecp/demo . ; cd demo; cat README

% docker pull exascaleproject/sdk:AHM19

 35

Using Shifter at NCSA BlueWaters

•  Allocate a node
–  % qsub -I -l nodes=1:ppn=32 -l walltime=01:15:00 -l gres=shifter16

•  Load the shifter module
–  % module load shifter

•  Pull the image (once)
–  % shifterimg pull exascaleproject/sdk:AHM19

•  Launch the image
–  % shifter --image=exascaleproject/sdk:AHM19 -- /bin/bash
–  % unset CRAYPE_VERSION; . /etc/bashrc
–  % spack find

Load shifter module and E4S image on the compute node

 36

Extreme-scale Scientific Software Stack (E4S)
https://e4s.io
•  Containers for HPC that include ECP ST products.

 37

E4S Second Release (37+ ST products)
exascaleproject/sdk:AHM19 (on Dockerhub)

 38

Extreme-scale Scientific Software Stack (E4S)
https://e4s.io

 39

Running MPI applications on other systems

•  Applications built with MPI in the E4S container can be replaced by the system

MPI!

•  This allows fast inter-node communication using the native interconnect.

•  Application and data are external to the E4S container.

•  Programming models, compilers, runtime libraries, and tools are inside the
container.

•  We can replace MPI using the MPICH ABI compatibility layer.

•  Goal: Build an MPI binary once and run it un-modified on all HPC Linux x86_64
clusters!

 40

Using E4S on NCSA BlueWaters and replacing MPI

•  qsub -I -l nodes=2:ppn=32 -l walltime=01:15:00 -l gres=shifter16 -v
UDI=exascaleproject/sdk:AHM19

•  This allocates a single node for 1:15h

•  Specifies the use of Shifter as the container environment

•  The image is exascaleproject/sdk:AHM19

•  This image was pulled on a compute node previously using:
–  %module load shifter; shifterimg pull exascaleproject/sdk:AHM19

•  After this qsub step, we can now launch the job using aprun

Step 1: Allocate a node with the E4S image

 41

Using E4S on NCSA BlueWaters Replacing MPI

% cat ~/shifter_mpi.sh

#!/bin/bash
set up LD_LIBRARY_PATH
for dir in $(echo $CRAY_LD_LIBRARY_PATH:/opt/cray/wlm_detect/default/lib64 | tr
':' ' ')
do
 realpath=$(readlink -f "$dir")
 if [[-z $LD_LIBRARY_PATH]]
 then
 eval 'export LD_LIBRARY_PATH=/dsl'$realpath
 else
 eval 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/dsl'$realpath
 fi
done

Step 2: Create a file called ~/shifter_mpi.sh

 42

Replacing MPI using cray-mpich-abi package

% cat run.sh
#!/bin/bash
export CRAY_ROOTFS=SHIFTER
module load shifter

module unload PrgEnv-cray # or any other PrgEnv module currently loaded
module load PrgEnv-gnu # or PrgEnv-intel
module unload cce

module unload cray-mpich
module load cray-mpich-abi
export LD_LIBRARY_PATH=$CRAY_MPICH_DIR/lib:$LD_LIBRARY_PATH
source ~/shifter_mpi.sh

export LD_LIBRARY_PATH=/usr/local/packages/ecp/spack/opt/spack/linux-centos7-x86_64/
gcc-7.3.0/hwloc-1.11.9-7xxgxbg65an7zmrztfcuu3hs73puj6v3/lib:$LD_LIBRARY_PATH
export OMP_NUM_THREADS=2

aprun -b -n 64 -- ./lulesh.host -i 100

Step 3: Source this ~/shifter_mpi and setup LD_LIBRARY_PATH

 43

Replacing MPI using cray-mpich-abi package

% ./run.sh
Running problem size 30^3 per domain until completion
Num processors: 64
Num threads: 2
Total number of elements: 1728000
…
Run completed:
 Problem size = 30
 MPI tasks = 64
 Iteration count = 100
 Final Origin Energy = 8.465100e+07
 Testing Plane 0 of Energy Array on rank 0:
 MaxAbsDiff = 7.916242e-09
 TotalAbsDiff = 3.030168e-08
 MaxRelDiff = 1.224484e-13

Elapsed time = 16.58 (s)
Grind time (us/z/c) = 6.1409471 (per dom) (0.095952298 overall)
FOM = 10421.845 (z/s)
Elapsed time = 16.58 (s)
Grind time (us/z/c) = 6.0131382 (per dom) (0.22270882 overall)
FOM = 4490.1679 (z/s)

Application 81575093 resources: utime ~442s, stime ~20s, Rss ~45404, inblocks ~9110

Step 4: run the example

 44

NAS Parallel Benchmark Example

% cd ~/scratch/host/NPB3.1
% make suite
% cd bin
% ./run.sh

% cd ~/scratch/demo/NPB3.1/bin/
% ./run.sh

Compare a native build with a container based build

 45

E4S VirtualBox OVA image

•  Docker
•  Singularity

•  Shifter

•  Charliecloud

Contains all four container runtimes and the E4S Singularity image!

 46

E4S image on Amazon AWS

•  AWS AMI ID (Oregon, us-west-2 region):
–  ami-063e830287b86155c

•  Royalty free, public image with HPC, AI, and 4 container runtimes

•  Launch EC2 instance with this AMI
–  Login: livetau
–  Password: ****

Contains all four container runtimes and the E4S Singularity image!

 47

Future work, issues…

●  Increasing the number of ST packages in E4S

●  Porting to IBM and ARM platforms

●  Support for GPUs and visualization tools

●  Addition of CI testing

●  Facility deployment

●  Scalable startup with full-featured “Supercontainers”

●  Improving the launch of MPI applications

 48

E4S: How to get involved

●  E4S BoF at SC19

●  Tuesday, Nov. 19, 12:15pm – 1:15pm, Room 405-406-407

●  CANOPIE-HPC Workshop at SC19

●  1st Workshop on Containers and New Orchestration Paradigms for Isolated

Environments in HPC

●  Monday, Nov. 18, 2019, 2pm – 5:30pm, Room 704-706

●  https://canopie-hpc.nersc.gov/

●  “Container Computing for HPC and Scientific Workflows”

●  Tutorial at SC19, Sunday, Nov. 17, 2019, 1:30pm – 5pm, Room 201

 49

Acknowledgment

“This	research	was	supported	by	the	Exascale	Computing	Project	(17-SC-20-SC),	a	
collaborative	effort	of	two	U.S.	Department	of	Energy	organizations	(Office	of	Science	
and	the	National	Nuclear	Security	Administration)	responsible	for	the	planning	and	
preparation	of	a	capable	exascale	ecosystem,	including	software,	applications,	

hardware,	advanced	system	engineering,	and	early	testbed	platforms,	in	support	of	the	
nation’s	exascale	computing	imperative.”

