
Cloud Resource Federation for

Enis Afgan
Galaxy Team

Johns Hopkins University
Jan 23, 2019

Galaxy platform as a science gateway

*NIX tools

|

ToolShed

<API>

BioBlend

Training

Admin

Tool

developer

s

Stampede2

Domain users

130,000
registered users

2PB
user data

20M
jobs run

100
training events
(2018 & 2019)

Stats for Galaxy Main (usegalaxy.org) in Dec 2018

usegalaxy.* federation - a group of public Galaxy servers

● Present a similar experience to
users no matter which they use

● Guarantee a minimum service
○ Tools & versions
○ Reference Data
○ Reproducibility
○ Training materials

● Starting with USA, Europe and
Australia, more welcome!

● Manage with community
assets/repositories

● Don’t prescribe hardware
resources

usegalaxy.org

usegalaxy.e

u

usegalaxy.org.a

u

125+ platforms for using Galaxy

Public servers

Academic and commercial clouds

Container images

Virtual Machines

Galaxy is
well-adopted by a
broad community

Scaling challenges: quotas

StorageJobs

3-4 small jobs

&

2 parallel jobs

250GB

Scaling challenges: silos and fragmentation

AWS | Azure | OpenStack

Galaxy on the Cloud
launch.usegalaxy.org

Private infrastructure

Public
Galaxy Servers

 www

Laptop → cluster

Private
Galaxy Server
localhost:8080

Galaxy cluster +
Jetstream + Stampede2

Galaxy Main
useGalaxy.org

Purchased server

SlipStream
Galaxy Appliance
www.bioteam.net

Which Galaxy has the
data / tool / workflow I need?

Manual
process

http://localhost:8080/

Each server is
custom-crafted and
centrally administered.

Galaxy
without

Quotas!

Galaxy-as-a-Service

Galaxy-as-a-Service: towards a federated Galaxy

AWS | OpenStackPrivate infrastructureLaptop → cluster
Galaxy cluster +

Jetstream +
Stampede

Purchased server

Galaxy [Main]
useGalaxy.org

Afgan E, Jalili J, Goonasekera N, Taylor N, Goecks J, “Federated Galaxy: Biomedical Computing at the
Frontier”, IEEE Cloud 2018, San Francisco, July 2018.

GaaS core components

Compute Storage AuthNZ

Compute: attach compute resources to a session

Galaxy Main Private Servers Public Servers Servers Cloud Galaxy Appliance

User

∞∞∞∞ ∞

Azure
BLOB

AWS
S3

OpenStack
Swift

Storage: allow a user to link to object stores

Auth: handle user identity and resource ownership

- Rely on identity that can span Galaxy instances

- Remove, and at least minimize, storing user cloud credentials

- Be compatible with a variety of resource providers

Jalili V, Afgan E, Taylor J, Goecks J, “Cloud Bursting Galaxy: Federated Identity and Access
Management”, Biorxiv https://doi.org/10.1101/506238, Dec 2018.

https://doi.org/10.1101/506238

A tool suite for cloud virtual environments: CloudVE

http://cloudve.org

Today: a closer look at
compute bursting

2015 proof of

concept

2018 implementation

plan

2019: GalaxyCloudRunner

- Enables bursting of user jobs to remote compute resources for the Galaxy
application

- Integrated with Galaxy 19.01 release but also applicable to older releases

- Enables bursting per Galaxy instance

- Documentation available at galaxycloudrunner.readthedocs.io

GalaxyCloudRunner usage

1. Install galaxycloudrunner Python library into your Galaxy’s virtual environment

2. Add a job rule to Galaxy which will determine the Pulsar node to route to

3. Configure your job_conf.xml to use this rule

4. Launch as many Pulsar nodes as you need through CloudLaunch

5. Submit your jobs as usual

What is Pulsar?

- Python server application

- Allows a Galaxy server to run jobs on a remote system

- No shared file system required

- Configurable

- Securable

- Can submit jobs to HPC queueing system

- Automatically handles tool dependency management

https://pulsar.readthedocs.io/

How Pulsar works

1. User clicks “Execute”
2. Galaxy packs up and sends:

○ Data
○ Config files
○ Tool name & version
○ Parameters and other job metadata

3. Pulsar accepts the job
4. Pulsar checks if tool is installed locally

○ If not - Installs tool with Conda or Docker
5. Pulsar submits job to local queue
6. Pulsar waits until job complete
7. Pulsar packs up result and sends it back to

GalaxyNode

What is CloudLaunch?

A gateway for discovering and launching applications on a variety of clouds.

Cloud-agnostic
Backed by CloudBridge, use native cloud capabilities for infrastructure
management

Pluggable and extensible
Arbitrary launch process and UI are supported, via an isolated plug-in mechanism

UI and REST API
UI available for end-users but it is all API driven for integration into external apps

Try it at https://launch.usegalaxy.org/

Afgan, E., Lonie, A., Taylor, J., Goonasekera, N., “CloudLaunch: Discover and Deploy Cloud Applications”,
Future Generation Computer Systems, June 2018.

Why CloudLaunch?

AWS Marketplace GCE Solutions

Azure Marketplace Jetstream Atmosphere VMs

Consistent interface

Single, uniform API

Multi-cloud

CloudLaunch

Shared global data via CVMFS

Stratum 0 server
data.galaxyproject.org
Penn State

Stratum 1 server
Melbourne

Stratum 1 server
Germany

Galaxy
EU

Galaxy
AU

Stratum 1 server
TACC

Other
compute

server

Cloud
Instance

Galaxy
Main

Stratum 0: The canonical source
Transactional updates

Stratum 1: Multiple servers
Mirrors Stratum 0 server
Continuous updates

User servers: Many multiple servers
Mounts repo from stratum 1
Based on GEO-API
With fallback to other stratum 1s

Primary mount Fallback mount

Configuring Galaxy

Make use of dynamic destinations to define galaxycloudrunner as the default
destination

<?xml version="1.0"?>
<job_conf>
 <plugins>
 <plugin id="local" type="runner" load="galaxy.jobs.runners.local:LocalJobRunner" workers="4"/>
 <plugin id="pulsar" type="runner" load="galaxy.jobs.runners.pulsar:PulsarRESTJobRunner"/>
 </plugins>
 <destinations default="galaxycloudrunner">
 <destination id="local" runner="local"/>
 <destination id="galaxycloudrunner" runner="dynamic">
 <param id="type">python</param>
 <param id="function">cloudlaunch_pulsar_burst</param>
 <param id="rules_module">galaxycloudrunner.rules</param>
 <param id="cloudlaunch_api_endpoint">https://launch.usegalaxy.org/cloudlaunch/api/v1</param>
 <!-- Obtain your CloudLaunch token by visiting: https://launch.usegalaxy.org/profile -->
 <param id="cloudlaunch_api_token">37c46c89bcbea797bc7cd76fee10932d2c6a2389</param>
 <!-- id of the PulsarRESTJobRunner plugin. Defaults to "pulsar" -->
 <param id="pulsar_runner_id">pulsar</param>
 <!-- Destination to fallback to if no nodes are available -->
 <param id="fallback_destination_id">local</param>
 <!-- Pick next available server and resubmit if an unknown error occurs -->
 <resubmit condition="unknown_error and attempt <= 3" destination="galaxycloudrunner" />
 </destination>
 </destinations>
 <tools>
 <tool id="upload1" destination="local"/>
 </tools>
</job_conf>

1.

2.

3.

4.

5.

0.

Support for opportunistic bursting

Route jobs to the remote cloud nodes only if the local queue is full.

In addition, can burst based on input file size

GalaxyCloudRunner is extensible so can add your own rules

...

<destinations default="burst_if_queued">
 <destination id="local" runner="local"/>
 <destination id="burst_if_queued" runner="dynamic">
 <param id="type">burst</param>
 <param id="from_destination_ids">local,drmaa</param>
 <param id="to_destination_id">galaxycloudrunner</param>
 <param id="num_jobs">2</param>
 <param id="job_states">queued</param>
 </destination>
 <destination id="galaxycloudrunner" runner="dynamic">

...

0.

1.

Galaxy cloud bursting in a picture

CloudLaunch

<destination>
…
</destination>

job_conf.xml

1. One-time setup

4. Submit jobs as normal

2. Launch cloud
nodes as desired

3. GalaxyCloudRunner
checks availability

CVMFS

Looking forward and beyond Galaxy

(Auto)-scaling, via CloudMan

Currently, each cloud node is a single, independent resource

Scale can be achieved by adding multiple nodes

Provision compute and storage infrastructure
(resources from IaaS cloud providers)

Submit and manage jobs via Pulsar API

Control and manage resources in response to settings or load

Give me a VM, disk, etc.

Actions

Configure resources into
cluster cluster nodes, to run

Slurm, Kubernetes, etc.

Run application jobs
submitted by end users via

Galaxy

Cl
ou

dM
an

Cluster

Infrastructure

https://github.com/galaxyproject/cloudman/tree/v2.0

Beyond Galaxy use cases

- CloudBridge is a general-purpose, multi-cloud library for interacting with the
IaaS resources

- CloudLaunch leverages CloudBridge and can launch a variety of applications;
each appliance is a plugin with custom back-end and front-end components

- CloudMan is a cloud manager for orchestrating a running cloud deployment,
primarily focusing on managing Kubernetes clusters for multiple clouds

- HelmsMan is a manager for Helm applications, currently integrated with
CloudMan

Acknowledgments
In

fr
as

tr
uc

tu
re

Pr
oj

ec
ts

In
st

itu
tio

ns

