

Blue Water Webinar

April 24th, 2019

Jupyter Team.

Presented by: Matthias Bussonnier

bussonniermatthias@gmai

I.com

GitHub: @carreau

Twitter: @mbussonn

Slides https://github.com/carreau/talks

IPython – 2001


```
$ ipython
Python 3.6.0
Type 'copyright', 'credits' or 'license' for more information
IPython 6.0.0.dev — An enhanced Interactive Python. Type '?' for help.

In [1]: from string import hexdigits
...: from random import choice
...:
...: def randhex(length=10):
...: return '0x'+''.join([choice(hexdigits) for x in range(10)]).l

ljust
lower
lstrip
```

(BTW, IPython is uppercase I)

QtConsole 2010-2011


```
IPython 0.11 -- An enhanced Interactive Python.
          -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
         -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
%guiref -> A brief reference about the graphical user interface.
In [1]: imshow(imread("baboon.png"))
Out[1]: <matplotlib.image.AxesImage at 0x9fe274c>
100
200
 300
 400
In [2]:
```


The IPython Notebook – 2012

The IPython Notebook – 2012

Jupyter – 2014

Renames the Python Agnostic Part to "Jupyter" – an homage to Galileo first Notebooks.

Jupyter: 2019

2017 ACM System Software Award

Dozens of Projects

A few Numbers

~4M on GitHub

https://github.com/parente/nbestimate

150+ repositories across multiple organizations (IPython, Jupyter, JupyterHub, JupyterLab, ... at 2 release/year that's ~ 1 release per day 1000+ Contributors

8+ Millions Users,

(with conservative estimates)

Worldwide ~21M developers – North America ~4.4M VS Code ~2.6 M Active Users GitHub 24M Users

Core Contributors

- 1000+ Open source contributors, Majority Volunteer
- Organization with Open Governance (currently

restructuring)

Sponsors

SIMONS FOUNDATION

How Jupyter came to be

Life cycle of a Scientific Idea

- Individual exploratory work (Repl, Scripts)
- Collaborative development (Dropbox/ Google Doc / emails / git)
- Parallel production runs (MPI, rewrite C++, batch jobs)
- Publication & communication (Word, Latex, ppt...)
- Education
- Goto 1

Tools Overhead

Each Tool brings (cognitive) overhead, time to install, deploy, and master.

Can we create a (set of) tools, with minimal overhead end enough flexibility?

Parallel with popular DataScience languages

Fortran/C/C++ are fast, but take significant development time and skills

Python/R/Julia are (usually) slower, but are useful immediately.

Rise of Jupyter

- An increasing number of discipline have a fast growing amount of data
- Technology is a tool that should
 - Empower the User
 - Amplify Domain Knowledge and Expertise
 - Facilitate Sharing and Collaboration

Jupyter provide a framework that can be use in all the step in the cycle of a scientific idea

- BSD Licensed (Free to use and redistribute even Commercially)
- Open Source, Community Maintained
- Important for sustainability, diversity, and equal access

Life cycle of a Scientific Idea in 2020

- Exploratory work: not "small" anymore.
- Collaboration: a rich, dynamic network.
- Scholarly output: new and diverse types.
- Consumers of output: from academia and education

to decision making and the public.

What is Jupyter

- Mainly Known for The Notebook
 - Web server, a web app, containing code, narrative, math and results.
 - Attached to a Kernel doing computation.
- Results can be:
 - Static
 - Interactive (client side)
 - Dynamic (trigger compute)

Narrative

Web Based Notebook Application

- Web technologies are accessible.
 - Only need a web browser to control an HPC Cluster
 - Familiar to users
- Rapid increase in performance and functionality
 - V8, 3D, Wasm, ...
- Identical for local and remote use.
- Allow multiple domain collaboration

Open Notebook Document Format

Notebooks get saved as JSON documents, which contain narrative, code,

and results

- Ubiquitous, JSON is readable in ~all languages.
- Result embedding ensure trust (no Copy Past errors)
- Make it easy to share and modify (Nbviewer, Binder)

JupyterLab

JupyterLab

Install Side by Side with Classic Notebook

- No Change in File Format, or protocol
 - Better Architecture (all extensions are first class)

Classic Notebook will be deprecated at some point

Many languages

Tools Integrations

Frontends: Notebook, JupyterLab, CLI, Vim, Emacs, Visual Studio Code, Atom, Nteract, Juno...

Easy, Scalable Deployment

JupyterHub

- A notebook application is a Single User application
- Quick and easy multi-user deployments are critical to lower overhead.
- JupyterHub Provides way a simple way to deploy
 Jupyter at scale.
 - https://z2jh.jupyter.org/ for a guide.

• • •

Binder

- Technology which takes any GitHub repository with Jupyter notebooks
- Turn it into a Docker image to ensure reproducibility and quick deployment.
- Starts an isolated, ephemeral server in a few seconds, for user to interact with.

^{*} Not limited to GitHub, Notebooks, Jupyter, Docker, or Ephemeral

MyBinder.org

- One Public instance of Binder
 - mybinder.org
 - (stats at grafana.mybinder.org)
 - Limited CPU/Memory/network
- Anonymous Login
- Ephemeral (2h) and restricted to 50 parallel launch
- Build on demand
- Caches images for fast launch

MyBinder.org

Ligo binder

NbInteract

In the Classroom

DataHub

datahub.berkeley.edu

http://www.ds100.org/

Zero setup*

- Campus Wide deployment
- Login with Cal ID
- Can focus on Domain

Knowledge

Students can still optionally install Jupyter on their machine later on.

* At least for students

In the Cloud

- 1.Foster collaboration around the open source scientific python ecosystem for ocean / atmosphere / land / climate science.
- 2. Support the development with domain-specific geoscience packages.
- 3.Improve scalability of these tools to to handle petabyte-scale datasets on HPC and cloud platforms.

In the Cloud

- Completely managed JupyterHub on Kubernetes
 - http://pangeo.pydata.org/
- Login via GitHub
- Customized for GeoScience

- Persisting servers on Google Cloud,
 - Large amount of Ram/CPU/Nodes
 - Dynamically scalable

