
 

Jupyter Team.

Presented by:
Matthias Bussonnier

bussonniermatthias@gmai
l.com
GitHub: @carreau
Twitter: @mbussonn

April 24th,
2019

 1

Slides https://github.com/carreau/talks

Blue Water Webinar

 2

IPython – 2001

(BTW, IPython is uppercase I)

 3

QtConsole 2010-2011

 4

The IPython Notebook – 2012

 4

The IPython Notebook – 2012

(2013)

 5

Jupyter – 2014

Renames the Python Agnostic
Part to “Jupyter” – an homage to

Galileo first Notebooks.

 6

Jupyter: 2019

1000+ Contributors

Dozens of Projects2017 ACM System Software Award

A few Numbers

 7

https://github.com/parente/nbestimate

~4M on GitHub

 8

150+ repositories across multiple organizations
(IPython, Jupyter, JupyterHub, JupyterLab, ...)
at 2 release/year that’s ~ 1 release per day

1000+ Contributors

 9

8+ Millions Users,
(with conservative estimates)

Worldwide ~21M developers – North America ~4.4M
VS Code ~2.6 M Active Users

GitHub 24M Users

Core Contributors

 10

• 1000+ Open source contributors, Majority Volunteer

•Organization with Open Governance (currently

restructuring)

Sponsors

 11

How Jupyter came
to be

 12

• Individual exploratory work (Repl, Scripts)

•Collaborative development (Dropbox/ Google Doc / emails / git)

•Parallel production runs (MPI, rewrite C++, batch jobs)

•Publication & communication (Word, Latex, ppt...)

•Education

•Goto 1

Life cycle of a Scientific Idea

 13

Each Tool brings (cognitive) overhead, time to install, deploy, and master.

Tools Overhead

 14

Can we create a (set of) tools, with minimal overhead end enough flexibility ?

Parallel with popular DataScience languages

Fortran/C/C++ are fast, but take significant development time and skills

Python/R/Julia are (usually) slower, but are useful immediately.

•An increasing number of discipline have a fast growing amount of

data

• Technology is a tool that should

• Empower the User

•Amplify Domain Knowledge and Expertise

• Facilitate Sharing and Collaboration

Rise of Jupyter

 15

Jupyter provide a framework that can be use in all
the step in the cycle of a scientific idea

- BSD Licensed (Free to use and redistribute even Commercially)

- Open Source, Community Maintained

- Important for sustainability, diversity, and equal access

•Exploratory work: not "small" anymore.

•Collaboration: a rich, dynamic network.

•Scholarly output: new and diverse types.

•Consumers of output: from academia and education

to decision making and the public.

Life cycle of a Scientific Idea in 2020

 16

•Mainly Known for The Notebook

•Web server, a web app, containing code, narrative, math and results.

•Attached to a Kernel doing computation.

•Results can be:

• Static

• Interactive (client side)

• Dynamic (trigger compute)

What is Jupyter

 17

 18

Narrative

Code
Result

Math

Dynamic
Controls

aka “widgets”

•Web technologies are accessible.

•Only need a web browser to control an HPC Cluster

• Familiar to users

•Rapid increase in performance and functionality

•V8, 3D, Wasm, ...

• Identical for local and remote use.

•Allow multiple domain collaboration

Web Based Notebook Application

 19

•Notebooks get saved as JSON documents, which contain narrative, code,

and results

•Ubiquitous, JSON is readable in ~all languages.

•Result embedding ensure trust (no Copy Past errors)

•Make it easy to share and modify (Nbviewer, Binder)

Open Notebook Document Format

 20

JupyterLab

 21https://blog.jupyter.org/jupyterlab-is-ready-for-users-5a6f039b8906

https://mybinder.org/v2/gh/jupyterlab/jupyterlab-demo/18a9793b58ba86660b5ab964e1aeaf7324d667c8?urlpath=lab/tree/demo/Lorenz.ipynb
https://blog.jupyter.org/jupyterlab-is-ready-for-users-5a6f039b8906

JupyterLab

 22

• Install Side by Side with Classic Notebook

•No Change in File Format, or protocol

•Better Architecture (all extensions are first class)

•Classic Notebook will be deprecated at some point

Many languages

 23

u alj i

...

Frontends: Notebook, JupyterLab,
CLI, Vim, Emacs, Visual Studio Code,

Atom, Nteract, Juno...

Tools Integrations

 24

Easy, Scalable
Deployment

 25

•A notebook application is a Single User

application

•Quick and easy multi-user deployments are

critical to lower overhead.

• JupyterHub Provides way a simple way to deploy

Jupyter at scale.

•https://z2jh.jupyter.org/ for a guide.

JupyterHub

 26

https://z2jh.jupyter.org/

 27

Google Colaboratory

...
See https://discourse.jupyter.org/t/in-depth-comparison-of-cloud-based-services-that-run-jupyter-notebook/460/14

• Technology which takes any GitHub repository

with Jupyter notebooks

• Turn it into a Docker image to ensure

reproducibility and quick deployment.

• Starts an isolated, ephemeral server in a few

seconds, for user to interact with.

Binder

 28

* Not limited to GitHub, Notebooks, Jupyter, Docker, or Ephemeral

MyBinder.org

 29

•One Public instance of Binder

•mybinder.org

• (stats at grafana.mybinder.org)

• Limited CPU/Memory/network

•Anonymous Login

• Ephemeral (2h) and restricted to 50

parallel launch

•Build on demand

•Caches images for fast launch

http://mybinder.org
http://grafana.mybinder.org

MyBinder.org

 30

 31

NbInteractLigo binder

In the Classroom

 32

DataHub
datahub.berkeley.edu

http://www.ds100.org/

• Campus Wide deployment

• Login with Cal ID

• Can focus on Domain

Knowledge

Students can still optionally

install Jupyter on their

machine later on.

Zero setup*

 33
* At least for students

In the Cloud

 34

http://pangeo-data.org/

1.Foster collaboration around the open source
scientific python ecosystem for ocean /
atmosphere / land / climate science.

2.Support the development with domain-specific
geoscience packages.

3.Improve scalability of these tools to to handle
petabyte-scale datasets on HPC and cloud
platforms.

In the Cloud

 35

http://pangeo-data.org/

•Completely managed JupyterHub on Kubernetes

•http://pangeo.pydata.org/

• Login via GitHub

•Customized for GeoScience

•Persisting servers on Google Cloud,

• Large amount of Ram/CPU/Nodes

•Dynamically scalable

