Analysis and Visualization with yt

Matthew Turk
UIUC School of Information Sciences
UIUC Astronomy

yt-project.org hub.yt

Data Bit

Model Data Bit

yt-project.org

Volumetric analysis and visualization

Jill Naiman, AJ Christensen, Kalina Borkiewicz ytini.com

the yt project

- Python-based (C, Cython, etc)
- Community developed
 - NumFOCUS FSA
 - Code of Conduct
 - Governance structure
 - 100+ contributors
 - Volumetric and non-spatial data
- Used in nearly 300 papers
- Grids, particles, octrees, and unstructured meshes
- Arbitrary geometric representations
- Minimize time to inquiry

Ingestion Representation Analysis Visualization

Project Members

Kenza Arraki Andrew Myers

Corentin Cadiou Jill Naiman

Brian Crosby Jeff Oishi

Bili Dong Brian O'Shea

Hilary Egan Douglas Rudd

Nathan Goldbaum Anthony Scopatz

Cameron Hummels Sam Skillman

Suoqing Ji Stephen Skory

Allyson Julian Britton Smith

Ben Keller Casey Stark

Kacper Kowalik Matthew Turk

Sam Leitner John Wise

Alex Lindsay Michael Zingale

Chris Malone John ZuHone

About 100 contributors...

Model Data Bit

	-	+		

ARTIO MOAB

Athena Nyx

Carpet OWLS

Castro OWLS-Subfind

Chombo PKDGrav

Eagle PLUTO

Enzo RAMSES

ExodusII Rockstar

FITS SDF

FLASH Stream HTTP

Gadget Stream Grids

Gadget-FOF Stream Octree

Gasoline Stream Particles

ARTIO MOAB

Athena Nyx

Carpet OWLS

Castro OWLS-Subfind

Chombo PKDGrav

Eagle PLUTO

Enzo RAMSES

ExodusII Rockstar

FITS SDF

FLASH Stream HTTP

Gadget Stream Grids

Gadget-FOF Stream Octree

Gasoline Stream Particles

ARTIO MOAB

Athena Nyx

Carpet OWLS

Castro OWLS-Subfind

Chombo PKDGrav

Eagle PLUTO

Enzo RAMSES

ExodusII Rockstar

FITS SDF

FLASH Stream HTTP

Gadget Stream Grids

Gadget-FOF Stream Octree

Gasoline Stream Particles

ARTIO MOAB

Athena Nyx

Carpet OWLS

Castro OWLS-Subfind

Chombo PKDGrav

Eagle PLUTO

Enzo RAMSES

Exodus|| Rockstar

FITS SDF

FLASH Stream HTTP

Gadget Stream Grids

Gadget-FOF Stream Octree

Gasoline Stream Particles

ARTIO MOAB

Athena Nyx

Carpet OWLS

Castro OWLS-Subfind

Chombo PKDGrav

Eagle PLUTO

Enzo RAMSES

ExodusII Rockstar

FITS SDF

FLASH Stream HTTP

Gadget Stream Grids

Gadget-FOF Stream Octree

Gasoline Stream Particles

Model Data Bit

Layers of Representation

Data Representation

- Coordinate Handling
 - Cartesian
 - Cylindrical
 - Spherical (geographic, tomographic)
- Symbolic Units
- Derived fields
 - Dependency calculation
 - Arithmetic and spatial

Representation of state.

Representation of state.

- Name
- Units
- Context
- Prescription

Representation of state.

Primitive

Representation of state.

Arithmetic Operations

$$E = \frac{mv^2}{2}$$

Arithmetic Operations

```
@derived_field("energy", units="erg")
def energy(field, data):
    E = 0.5 * (data["mass"] *
        data["velocity_magnitude"]**2)
    return E
```

Spatial Operations

$$\operatorname{div} V = \frac{\delta V_{x}}{\delta x} + \frac{\delta V_{y}}{\delta y} + \frac{\delta V_{z}}{\delta z}$$

Spatial Operations

Mid-Level Operations

Mid-Level Operations

Mid-Level Operations

Symbolic manipulation and pragmatic ontologies

Semantically-meaningful Data

Symbolic manipulation and pragmatic ontologies

Semantically-meaningful Data

Symbolic manipulation and pragmatic ontologies

43 primitive fields
363 derived fields
35 distinct units
2.5 primitive fields per derived

Imaging and volume tools

- Volumetric segmentation
 - Parallel
 - Irregular resolution data
- Marching cubes
- Ray-tracing
 - Radiative transfer
 - Volume rendering
- Rasterization / pixelization
 - Coordinate systems
 - Discretization

Hsi-Yu Schive

First Order

Second Order

Approximate Second Order

Approximate Second Order

Community

- Not the biggest, not the smallest, but active
 - 375 on the "users" mailing list
 - 115 on the "dev" mailing list
- Code
 - Peer review
 - Mentorship
 - Continuous testing system

Community

- How can we increase diversity?
- How can we foster careers?
- How can we lower barriers?

What are our core values?

product versus project

product

product

"the thing"

"the people"

Thank you.

mjturk@illinois.edu

http://yt-project.org/

http://dxl.ncsa.illinois.edu/

http://sites.google.com/site/matthewturk/

Three Options:

```
$ docker pull xarthisius/ythub-jupyter
```

```
$ docker run --rm -ti -p 8888:8888 xarthisius/ythub-jupyter
```

\$ conda install -c conda-forge yt

yt-project.org and click on "Get yt"