
Blue Waters: python profiling webinar

Function profiling

The python cProfile builtin function profiler works with the bwpy module.
To use it with your script, it can be as simple as:

$ aprun -n 1 python -m cProfile <myscript.py>

Optionally add the -o <bw.profile> and your bw.profile may be analyzed
with any of the
python profile viewers you may install in a virtualenv or via the python
pstats module:

$ python
>>> import pstats
>>> p = pstats.Stats('bw.profile')
>>> p.sort_stats('cumulative').print_stats(5)

A new ssh will soon be deployed that can leverage Globus Authentication and any of your linked identities. For Xsede, we map
<Xsede_portal_identity> to <local_account> for each resource provider in Xsede. Because the python code will be production and deployed at a
variety of sites, we want to verify that performance is reasonable and look for any hot spots in the code. Functional profiling revealed the code to
be performant with no noticeable hotspots save for the data query of the REST interface in front of the Xsede Central Database. This was
expected.

bwpy module

module load bwpy # for Blue Waters, or use the default python3 on your local system

function profiling is built-in

Most python installations will have cProfile included. Its usage is highly recommended before you transition to "production" python code.

Line level profiling

You may setup the line_profiler in a virtualenv as shown and use it to
profile functions you decorate with @profile .

arnoldg@h2ologin2:~> module load bwpy
arnoldg@h2ologin2:~> virtualenv line_profiler
Using base prefix '/mnt/bwpy/single/usr'
New python executable in /mnt/a/u/staff/arnoldg/line_profiler/bin/python3.5
Also creating executable in /mnt/a/u/staff/arnoldg/line_profiler/bin/python
Installing setuptools, pip, wheel...done.
arnoldg@h2ologin2:~> source line_profiler/bin/activate
(line_profiler) arnoldg@h2ologin2:~> pip install line_profiler
Collecting line_profiler
 Downloading https://files.pythonhosted.org/packages/14/fc
/ecf4e238bb601ff829068e5a72cd1bd67b0ee0ae379db172eb6a0779c6b6
/line_profiler-2.1.2.tar.gz (83kB)
 100% |################################| 92kB 3.9MB/s
...
(line_profiler) arnoldg@h2ologin2:~> kernprof
Usage: kernprof [-s setupfile] [-o output_file_path] scriptfile [arg] ...

switching into a batch job here...

(line_profiler) arnoldg@h2ologin2:~> grep --after-context=5 @profile
ep_task_errors_bw.py
@profile
def my_endpoint_manager_task_list(tclient, endpoint):
 """
 Get tasks from an endpoint, then look through them for error events.
 Also mark as SRC, DEST, or SRC_DEST as the case may be.
 """

(line_profiler) arnoldg@h2ologin2:~> aprun -n 1 kernprof -l
ep_task_errors_bw.py
...

(line_profiler) arnoldg@h2ologin2:~> python -m line_profiler
ep_task_errors_bw.py.lprof

This is a production code we run on the backend to monitor our Globus Online endpoints for some transfer error conditions. The code was
developed for the ncsa#Nearline endpoint. When it was ported to the ncsa#BlueWaters endpoint, cycle time for the python script became much
longer (because that endpoint is typically involved in more transfers). We used both functional and line-level profiling to diagnose the issue. Line-
level profiling pointed out a single line consuming most of the time. Some research into the Globus API for the call on that line led us to a better
query formulation which greatly minimized the data returned from GO. +1 for python profiling.

References:

https://bluewaters.ncsa.illinois.edu/Python-profiling

https://github.com/ncsa/endpoint_task_errors

https://docs.globus.org/api/

https://bluewaters.ncsa.illinois.edu/Python-profiling
https://github.com/ncsa/endpoint_task_errors
https://docs.globus.org/api/

	Blue Waters: python profiling webinar

