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Abstract: We describe enhancements to the Amber package of molecular simulation software 
made to take advantage of the parallel compute environment provided by the Blue Waters 
computational resource under the auspices of the NEIS-P2 program supporting the PRAC 
“Hierarchical molecular dynamics sampling for assessing pathways and free energies of RNA 
catalysis, ligand binding, and conformational change”. We also discuss some recommendations 
of simulation settings for achieving better performance on Blue Waters. 

Introduction 

With the advent of modern high-performance computational resources, data can potentially be 
generated and analyzed faster and in greater volume than ever. However, existing software must 
be modified and/or enhanced to take advantage of this hardware, particularly when that software 
may have been originally developed with different hardware considerations in mind. The Amber 
molecular simulation software package1 has been around for approximately three decades and 
has undergone significant changes, from initially being designed to run efficiently on low-
memory single processor machines, to now being able to run on multiple CPUs or GPUs. Given 
the availability of petascale computational resources like Blue Waters, it is of great interest not 
only to modify software to run on resources efficiently, but to also use simulation methods that 
take the most advantage of the massively parallel layout of such resources. 

In this report we describe several further changes and additions to various software packages 
within Amber (namely the MD engines SANDER and PMEMD, and the analysis software 
CPPTRAJ) made to take advantage of the hardware on Blue Waters. This includes the 
development of a multi-dimensional replica exchange molecular dynamics simulation method, 
changes to the Amber NetCDF trajectory and restart formats necessary to implement these 
methods, and modifications to the analysis software CPPTRAJ to recognize and process these 
coordinate files. We also discuss some of the issues encountered in implementing these changes, 
particularly as it relates to the impact of data input/output (IO) on performance, and provide 
general recommendations for running Amber on a resource like Blue Waters. 
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Porting of AMBER to Blue Waters 

Blue Waters provides access to compilers from three major vendors: Cray, PGI, and GNU. There 
were several issues encountered when compiling with all three compilers, and no one compiler 
was able to provide access to all features of Amber. For the purposes of this discussion Amber 
code will be divided into code that only runs on CPUs (essentially all of Amber) and code that 
runs on GPUs (in this case only the CUDA code for PMEMD). 

GNU compilers were able to compile both the CPU and GPU portions of Amber; however, the 
CPU versions of PMEMD and SANDER failed all tests related to particle mesh Ewald 
calculations (i.e. calculations with periodic boundaries). The issue appears to be related to 
compiling the fast Fourier transform (FFT) library bundled with Amber with optimizations 
turned on. Because of this, currently only the GPU code (i.e. CUDA PMEMD) is used from 
GNU compilations. The problems with the CPU can be overcome through use of the Cray FFTW 
module however we have tended to focus efforts on the PGI version for the CPU code to avoid 
having to change the build scripts and since the performance is equivalent. 

PGI compilers were able to compile only the CPU code. Compilation of GPU code fails due to 
an incompatibility of PGI compilers with the CUDA header file ‘host_defines.h’. However, 
unlike the GNU compilers, the PGI-compiled CPU code passes all tests. Because of this, 
currently all non-GPU code used on is PGI-compiled. 

Amber initially could not be configured for Cray compilers. A Cray compiler target was created 
after much trial and error. It was found that for successful compilation, the flags ‘-emf’ for 
producing module files with lower case names, ‘-f free’ for free-format fortran code, and ‘-h 
gnu’ for GNU compatibility were required. Despite this, only a handful of programs from Amber 
were able to be compiled successfully (including PMEMD and CPPTRAJ but not SANDER), as 
the Cray compilers appear to be much more strict in terms of allowable syntax. Initially, CPU 
PMEMD was found to fail tests in the same way as the GNU-compiled code. Compiling CPU 
PMEMD with Blue Waters version of FFTW3 (module load fftw) was found to correct this; 
therefore vendor-supplied FFTW3 is currently required to compile PMEMD. Compiling GPU 
code was not attempted with Cray compilers. The recommended configure and compile 
procedure (CPPTRAJ and PMEMD only) for Cray compilers on Blue Waters is: 

cd $AMBERHOME 
module load fftw 
./configure -noX11 -nomtkpp -nofftw3 -norism cray 
cd $AMBERHOME/AmberTools/src/cpptraj 
make install 
cd $AMBERHOME/src/pmemd 
make install 

To compile the MPI version of PMEMD, add the ‘-mpi’ flag to configure and skip compile for 
CPPTRAJ. Performance of the Cray-compiled MPI-enabled PMEMD compared to GNU-
compiled GPU code is shown in Figure 1. It should be noted that these results are from April 
2013, and that currently full use of the node (i.e. PPN=32) scales much better (closer to 
PPN=16), although CPU performance still does not compare to GPU performance. 
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Figure 1: Performance of the AMBER PMEMD engine on Blue Waters for the joint-
AMBER-CHARMM DHFR benchmark on the CPU and GPU nodes.  PPN is cores 
running per node.  Note that better performance is seen in nVidia K20X nodes when the 
error correcting is disabled (which is not enabled by default on Blue Waters). 

 

Hamiltonian Replica Exchange: An Efficient Use of Parallel Resources 

Traditionally when running calculations like molecular dynamics (MD) simulations in a parallel 
environment, the factor that limits overall calculation speed tends to be communication overhead 
between nodes (i.e. parallel scaling). Therefore it is of interest to perform as many calculations as 
possible on individual nodes while keeping communication between the nodes to a minimum. 
Replica Exchange MD2 (REMD) is a commonly used enhanced sampling technique that is well-
suited to a parallel environment like Blue Waters. Briefly, REMD involves simulating N non-
interacting replicas of a system of interest, each with a Hamiltonian that differs in some way. 
After a certain amount of time, the probability of exchanging certain replicas is calculated 
according to Equation 1. The exchange is either accepted or rejected using the Metropolis 
criterion. The advantage of this method in a parallel environment is that communication between 
replicas occurs only when an exchange is attempted.  
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Equation 1: Probability of exchanging two replicas. Hn represents a Hamiltonian at βn and Xn 
represents a set of atomic coordinates. 

𝑃𝑒𝑥𝑐ℎ �𝐻𝑖(𝑋1),𝐻𝑗(𝑋2)� = 𝑒𝑥𝑝 �−𝛽𝑖�𝐻𝑖(𝑋2) − 𝐻𝑖(𝑋1)� − 𝛽𝑗 �𝐻𝑗(𝑋1) − 𝐻𝑗(𝑋2)�� 

The most common type of REMD is temperature REMD (T-REMD), where every replica has the 
same Hamiltonian simulated at a different temperature. T-REMD has the advantage of being 
simple to implement. Since the only difference between Hamiltonians is temperature (i.e. Hi 
equals Hj), only the temperature of each replica needs to be swapped when an exchange is 
performed and the velocities scaled accordingly, resulting in minimal communication between 
replicas. This means that the coordinate trajectory written out by each replica will contain frames 
at different temperatures, so the replica trajectories must be post-processed to obtain trajectories 
where each frame in the trajectory is at the same temperature (i.e. temperature trajectories). This 
is currently accomplished with either PTRAJ or CPPTRAJ3 analysis software from Amber. 

However, changing temperature may not always be sufficient to enhance sampling of certain 
processes, or one may be interested in how changing other parts of the Hamiltonian can enhance 
sampling. Therefore it is desirable to be able to perform a REMD simulation where the 
differences in the Hamiltonian can be anything from changes in torsional energy barriers to 
changing solvation models. In order to accomplish this, for each exchange attempt between 
Hamiltonian i with coordinates 1, Hi(X1), and Hamiltonian j with coordinates 2, Hj(X2), each 
Hamiltonian requires both X1 and X2 (see Equation 1), so Hi must be sent X2 and Hj must be sent 
X1, regardless of whether the exchange is accepted or not. This means there is significantly more 
communication between replicas compared to T-REMD, so for this method to remain efficient a 
relatively fast network interconnect is required. However, the benefit of this generalized 
Hamiltonian REMD (H-REMD) is that users have much more flexibility when choosing how to 
enhance sampling in their systems. In addition, since the coordinates are swapped whenever an 
exchange is accepted each replica writes out a sorted trajectory for a given Hamiltonian; no post 
processing is required. Both T-REMD and H-REMD are currently implemented in Amber 12. 

Extension of Accelerated Molecular Dynamics for use with H-REMD 

Accelerated molecular dynamics4 (AMD) is another enhanced sampling technique that functions 
by applying a so-called “boost” potential to the system when the energy is below a certain 
threshold in order to “accelerate” the system out of energy minima. This increases sampling by 
inducing the system to spend less time in minima (where it may become “trapped”), allowing 
energy barriers to be crossed more frequently. However, obtaining unbiased distributions 
obtained from an AMD simulation can be challenging5. A potential solution to this issue is to 
combine AMD with H-REMD, where the first replica is not “boosted” and so no explicit 
unbiasing of results is required. The AMD+H-REMD approach has been implemented 
previously using SANDER and external python wrappers6. The reason for this is most likely 
because although AMD is currently implemented in SANDER and PMEMD7, the AMD boost 
energy is not included in the overall potential energy, which is required for H-REMD to function 
properly (otherwise the Hamiltonians are identical). 

While the external wrapper approach may work, it certainly does not make efficient use of 
parallel resources since at every exchange execution of the code must be stopped and then 
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restarted after the exchange is completed. Therefore PMEMD was modified so that the AMD 
boost energy was included in the total potential energy. This involved modifying the AMD 
calculation routines to return total boost energy, extending the energy arrays in PMEMD to 
include a place for the boost energy, ensuring the boost energy was summed into the total for 
both GB and PME force calculations, and modifying the output so that the boost energy term 
was reported. These changes are currently in the Amber GIT master branch. Local copies of the 
Amber GIT are currently on Blue Waters in our project space: 

/mnt/b/projects/sciteam/jn6/GIT 

This code will be released to the general community with the next official AMBER release and 
in the meantime can be requested from the AMBER developers or Cheatham. 

Note that PMEMD was chosen for modification as it has a significant speed advantage over 
SANDER. Note that currently only the CPU version of PMEMD works for AMD+H-REMD. 
Future plans include modifying the GPU AMD routines to return AMD boost energy as well. 

It is important to note that when running AMD+H-REMD the choice of parameters controlling 
AMD is not straightforward. Parameters must be chosen with care so that the potential energy 
distribution of Hamiltonians overlaps such that a reasonable number of exchanges are accepted. 
Unlike a single AMD simulation where parameters are chosen so the boost potential is only 
activated some of the time5, in H-REMD parameters should be chosen so that in the boosted 
replicas the boost potential is always active (otherwise the Hamiltonians will overlap with the 
unbiased one). Thus far, we have not been able to develop a precise scheme for determining 
AMD parameters for achieving certain exchange acceptance rates in AMD+H_REMD beyond 
trial and error, although this remains an active area of research. 

Development of Multi-dimensional Replica Exchange 

In the descriptions of T-REMD and H-REMD above, exchanges occur in only one dimension, 
i.e. only one part of the Hamiltonian is being altered between replicas. However, it may be 
desirable to attempt exchanges in two (or more) dimensions. For example, in one dimension 
replicas could differ by temperature, and in another dimension they could differ by AMD boost 
potentials. This type of simulation where multiple replica exchange dimensions are coupled is 
referred to as multi-dimensional REMD (M-REMD). Because conformational sampling can be 
enhanced in more than one dimension in M-REMD, aspects of the system dynamics that may not 
be improved by one dimension (such as protein folding and temperature) could potentially be 
improved by the other dimension. Since increasing the number of dimensions can rapidly 
increase the number of replicas required, a larger number of computational nodes are also 
required compared to one-dimensional REMD simulations, and if any of the dimensions are 
Hamiltonian (which is likely) the communication between those nodes needs to be fast. Also, if 
any dimension is temperature, trajectories will have to be sorted if data is to be processed at a 
single temperature. This requires that every trajectory frame contain information on which 
dimensions it is in. Similarly, the restart files used to checkpoint the simulation must contain the 
same information. This means both the trajectory and restart formats must be extended and any 
analysis software must be modified to read and process the new formats. 
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M-REMD has been implemented in the Amber MD engines SANDER and PMEMD and makes 
use of the existing T-REMD and H-REMD exchange functions. Exchanges are attempted in each 
dimension in turn so that the first exchange is attempted in the first dimension, the second 
exchange is attempted in the second dimension, and so on. This is illustrated in the following 
pseudo-code: 

multid_exchange(n_exchange) { 
  my_dim = n_exchange % remd_dimension; 
  switch ( remd_types[my_dim] ) { 
    case 1: temperature_exchange(); break; 
    case 3: hamiltonian_exchange(); break; 
  } 

Here n_exchange is the number of the exchange being attempted, remd_dimension is the 
total number of replica dimensions, and remd_types is an array of size n_dimension 
containing a numeric index corresponding to the type of exchange to be performed in that 
dimension. Currently the code is only set up for temperature or Hamiltonian exchange, but could 
be extended to have different exchange types in the future. 

M-REMD is enabled by specifying ‘-rem -1’ on the command line. As with T-REMD or H-
REMD, individual replicas are defined in a file called the group file, with each line defining the 
input file, input coordinates, topology file, etc. for each replica. In M-REMD there is an 
additional file called the dimension file, which defines both the replica dimensions and which 
replicas are allowed to exchange within each dimension. This file follows the same Fortran name 
list format that Amber MD input files use; there is a title followed by a ‘&multirem’ name list 
for each replica dimension with format: 

Dimension X Title 
&multirem 
  exch_type = <Exchange Type>, 
  group(1,:) = <Group 1 Replica List>, 
  … 
  group(N,:) = <Group N Replica List> 
  desc = ‘Dimension X description’ 
/ 

Exchange type (exch_type) is currently restricted to either ‘TEMPERATURE’ or 
‘HAMILTONIAN’. A “Replica List” consists of a comma-separated list of integers 
corresponding to positions in the group file, where replica 1 is the first entry in the group file. A 
“Replica List” defines which replicas are allowed to exchange within that dimension. 

In order to facilitate post-processing of trajectories from M-REMD simulations, each frame must 
record where it is in the ensemble (i.e. its index in each replica dimension). Extending the Amber 
ASCII trajectory/restart formats would require that every Amber trajectory/restart parser 
(including third-party ones) would have to be updated. Since NetCDF files are by their nature 
orthogonal adding additional information to the format does not break existing parsers (the 
additional information is simply ignored). Primarily because of this, it was decided that only the 
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Amber NetCDF trajectory and restart formats would be updated for M-REMD, and thus all M-
REMD runs require use of the Amber NetCDF trajectory and restart formats. 

Only three additional pieces of data were required to be added to the NetCDF trajectory/restart 
formats: an integer containing the number of replica dimensions (N), an integer array (of 
dimension N) containing the type of each dimension, and an array (of dimension FxN where F is 
the total number of frames) containing the indices of a replica in each dimension for each frame. 
All of these changes have been made and are currently available in the Amber GIT master 
branch. 

Modification of Analysis Software for Processing M-REMD Trajectories 

As mentioned above, the Amber NetCDF trajectory format was modified for M-REMD 
simulations to include information on replica dimensions to aid in post-processing trajectories. 
This required also modifying analysis software to recognize and use the extra information. Since 
CPPTRAJ is able to process NetCDF trajectories faster than PTRAJ, only CPPTRAJ was 
modified to read M-REMD trajectories. 

Currently, CPPTRAJ has the ability to read in an ensemble of replica trajectories and process 
only frames at a user-specified position in the ensemble (referred to as replica trajectory 
processing). For example, to process frames at 300.0 K from a T-REMD ensemble of trajectories 
of which rem.001 represents the first replica, the following CPPTRAJ input would be used: 

trajin rem.001 remdtraj remdtrajtemp 300.0 

Since an M-REMD trajectory may contain any number of dimensions, a slightly more general 
syntax is needed for choosing frames that correspond to only one index in each dimension. This 
is now accomplished with the remdtrajidx keyword: 

remdtrajidx <dim1 index>,<dim2 index>,…,<dimN index> 

For example, given M-REMD trajectories in which the first dimension is temperature and the 
second dimension is Hamiltonian, to pick frames at the first temperature and 4th Hamiltonian the 
following CPPTRAJ input would be used: 

trajin rem.001 remdtraj remdtrajidx 1,4 

Note that CPPTRAJ has been updated to also be able to read the new M-REMD NetCDF restart 
format as well. 

Ensemble Trajectory Processing 

Instead of processing frames at one level of the ensemble, in some cases it may be desirable to 
process all levels of the ensemble at once. This has been implemented via the ‘ensemble’ 
command in CPPTRAJ. It is similar to the original replica trajectory processing in that an 
ensemble of replica trajectories is read in. However, instead of only one frame at a user-specified 
target being selected from the ensemble for processing, all frames are used for processing. 
Sorting of frames is performed if necessary, then any specified actions are run on every member 
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of the sorted ensemble. The output from a given action for all members of the ensemble is 
written to the same file. If coordinate output is desired, coordinates are written to sorted 
trajectories with numeric suffixes indicating their overall position in the ensemble. Ensemble 
analysis can be performed with T-REMD, H-REMD, or M-REMD trajectories. 

For example, consider an ensemble of 4 replica trajectories from a T-REMD simulation named 
rem.1, rem.2, rem.3, and rem.4 and the following CPPTRAJ input: 

ensemble rem.1 
strip :WAT 
rms first out rmsd.agr @CA 
trajout nowat.nc netcdf 

This would (in order) read in all four trajectories and sort them by temperature, remove water 
residues, calculate the coordinate RMSD of the sorted replica trajectories to the first frame based 
on CA atom positions, and write four sorted NetCDF trajectories named nowat.nc.X where X 
ranges from 0-3 and corresponds to temperatures in the ensemble from lowest to highest. 

On Blue Waters, ensemble trajectory processing initially proved to be very slow since all 
coordinate IO was being done via only one node. Because of this, ensemble analysis was 
parallelized with MPI so that one node per replica was responsible for reading and processing 
trajectory frames. First, frame X,M (X = frame #, M = frame position in the ensemble) from 
replica trajectory N is read by node N. If the ensemble needs to be sorted, every node sends to 
every other node the position in the overall ensemble M of the frame it read. Then every replica 
that does not have the correctly sorted frame (i.e. M does not equal N) sends its coordinates to 
node M and receives its coordinates from the node containing frame N. When coordinate sorting 
is complete node N has the frame with M equal to N. On each node space is allocated for two 
frames (referred to as frame 0 and frame 1). The frame X,M is initially read into frame 0. If 
coordinates need to be sorted, the sorted frame received is stored in frame 1. An index is set to 1 
or 0 depending on whether a frame was received or not respectively; further trajectory processing 
uses this frame. 

Table 1: Timings for serial vs parallel ensemble processing with CPPTRAJ. 

Type Dimensions Replicas Frames Serial (s) Parallel (s) Speedup 

H-REMD 1 8 60000 25672 3910 6.57 

T-REMD 1 60 100 2859 65 43.98 

M-REMD 2 192 1000 2507 42 59.69 

The performance of ensemble processing in parallel versus in serial is shown in Table 1. The 
speedup for processing H-REMD trajectories of 6.57 is close to the ideal speedup of 8 since 
these trajectories do not require sorting (hence communication between nodes is minimal). The 
speedup for processing T-REMD and M-REMD trajectories are far less than ideal since multiple 
coordinate exchanges happen on average for every frame processed, but the speedup is still an 
incredible 2 orders of magnitude improvement over the serial timings.  
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NetCDF: Implications for Performance 

When running REMD simulations on Blue Waters, it was found that overall performance 
(measured in terms of ns of simulation time per day) would vary over the course of the 
simulation by an extreme amount; e.g. for one system run performance would fluctuate from ~60 
ns/day to ~120 ns/day (see Figure 2). 

 

Figure 2: Variable performance on Blue Waters due to I/O issues. 

To ascertain if this was related to communication lag between nodes or input/output (IO), two 
REMD simulations were run, one with exchanges (requiring communication between nodes) and 
without IO, the other without exchanges and with IO. The simulation with exchanges and 
without IO showed no slowdown, indicating the issue was related to IO. During the course of a 
simulation, several files are written, including the output file which contains various simulation 
data (chiefly energies), the trajectory file containing coordinates, and the restart file which is 
used to checkpoint the simulation. To ascertain exactly what IO was causing the observed 
slowdown several test REMD simulations were run using a solvated single nucleic acid (8000 
atoms): one with all IO disabled, one with all  IO enabled, one with only the output file being 
written, and one with the output and trajectory files being written; the results are shown in Table 
2. It was found that appreciable slowdown occurred only when writing of restart files was 
enabled. Since writing NetCDF trajectory files did not appear to slow down simulations, a final 
test was run where all IO was enabled but NetCDF restarts were written instead of ASCII ones. It 
was found that the use of NetCDF restarts resulted in almost no slowdown. Therefore it is 
recommended that when running any simulations with Amber both NetCDF trajectories and 
restarts be used. 
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Table 2: REMD simulation timings (no exchanges) for various IO combinations. 

Simulation Restart Type Speed (ns/day) 

All IO Disabled n/a 66-68 

All IO Enabled ASCII 20-23 

Only output file n/a 67-68 

Only output/trajectory files n/a 64-66 

All IO Enabled NetCDF 62-64 

 

Conclusion 

In summary, changes to the Amber code functionality and performance were engineered to more 
efficiently utilize the Blue Waters computational resource. With the new technologies, the 
associated groups are pushing forward to better understand biomolecular structure, dynamics and 
interactions with a current focus on improving and understanding the multi-dimensional replica-
exchange methods and also assessing, validating and improving nucleic acid force fields. 
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