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Super-massive black hole mergers are believed to happen with significant frequency at the core
of most active galaxies. Such events would be very exciting to detect, revealing important infor-
mation on the birth and growth of their host galaxies, as well as explain how highly relativistic
matter behaves in their surrounding accretion disks and in their associated jets. Additionally, it
would provide a concrete example of one of general relativity’s most spectacular predictions and
possibly also allow a test of the validity of general relativity in a truly strong-field regime. Our aim
is to provide the field with the first accurate electromagnetic predictions of these circumbinary disk
environments using state-of-the-art general relativistic magnetohydrodynamics (GRMHD) simula-
tions and general relativistic radiative transfer calculations of their resultant data. Our Subaward
PRAC project focuses on the development of computational frameworks around three codes that
will be used for this endeavor: 1) harm3d, a relativistic magnetohydrodynamics code for accretion
disk calculations in black hole space times; 2) bothros, a general relativistic ray-tracing code used to
post-process harm3d data; 3) GRHydro, part of the Einstein Toolkit numerical relativity package
used to evolve magnetohydrodynamics in dynamical gravitational environments. We report here on
our progress in improving the load balance of harm3d, harm3d’s parallel performance on Blue Waters
of the National Center for Supercomputing Applications (NCSA), our progress toward improving
the efficient of bothros calculations, and our efforts with GRHydro development.

I. INTRODUCTION

A major outstanding open question in astro-
physics is how supermassive black holes (SMBH)
and their host galaxies form and evolve in our uni-
verse. SMBHs are observed in the centers of al-
most all galaxies with a bulge [1] up to very high-
redshifts [2], and current models for active galaxies
have SMBHs as the central engines [3]. The pre-
vailing theory of galaxy formation asserts that to-
day’s massive galaxies were assembled from smaller
pieces, as dark-matter halos of progressively greater
size merge [4, 5]. In a merging pair of galaxies, dy-
namical friction from the gas and stars surrounding
the SMBHs lead to the formation of tight SMBH
binary (see e.g. [6–8]), which may then merge due
to subsequent losses of angular momentum (eventu-
ally due to gravitational waves). These mergers will
strongly affect the gas accreting onto the BHs, lead-
ing to electromagnetic (EM) signals from a purely
gravitational phenomenon.

To test galactic merger theories, we need to model
the EM signals from SMBH mergers. We can then
search for these signals to determine if SMBHs merge
at the rate and mass-ratio the current theories pre-
dict. It is therefore critical to understand the dy-
namics of accreting magnetized plasma around su-
permassive black holes during a merger, and the light
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emitted during these spectacular events, which will
be accompanied by an emission of a massive amount
of energy in gravitational waves. Intensive, high-
cadence astronomical surveys such as Pan-STARRS
or the planned LSST make detecting these rare merg-
ers of supermassive black hole binaries (SMBHBs)
more likely, yet accurate theoretical predictions for
the SMBHB’s EM counterpart remain to be done.
The goal of this project is to develop accurate the-
oretical estimates of the EM signature of SMBHBs
through GRMHD simulations using the state-of-the-
art harm3d [9] code, developed by Noble for accretion
disk simulations.

These science goals can only be reached with the
construction of a highly-sophisticated computational
framework. High-performance computation is essen-
tial, because tracking the dynamics of these events
involves simultaneously solving the equations of radi-
ation transport and magneto-hydrodynamics (MHD)
in a general relativistic spacetime, as well as the
highly nonlinear Einstein Field Equations.

The primary goals of our project are to: 1) improve
the runtime efficiency and load balance of harm3d
simulations; 2) parallelize bothros with OpenMP
and add new infrastructure for distributing I/O and
data processing effort over several nodes; 3) imple-
ment OpenMP throughout GRHydro and evaluate its
performance on Blue Waters. In Section II, we pro-
vide a mathematical description of our problems of
interest. We then describe our results in Section III
followed by a summary and concluding remarks in
Section IV.
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II. THEORETICAL BACKGROUND

Our primary science objectives are to perform ac-
curate simulations of the dynamics of magnetized
matter in the strong-field regime of gravity. We there-
fore rely on our ability to solve the nonlinear, coupled
PDEs of MHD on curved manifolds (i.e. in the con-
text of the theory of general relativity), and on pro-
cessing this simulation data with general relativistic
radiative transfer. Below, we provide a brief descrip-
tion of the equations involved in these two kinds of
calculations.

Before we begin, we note that Greek indices (e.g.,
µ, ν, λ, κ,..) represent space and time components
and range over [0, 3], while Roman indices (e.g.,
i, j, k, l,...) represent spatial components that range
over [1, 3]. Our physical system resides in a curved
spacetime described by the invariant line element

ds2 = gµνdx
µdxν (1)

where dxµ are displacements along the space-time ex-
tents of our coordinate system, and gµν is the covari-
ant form of our spacetime metric which describes the
gravitational curvature of our system’s environment.
Our present research goals involve binary black hole
scenarios where gµν is a function of both space and
time, necessitating us to advance the metric with the
fluid.

A. GRMHD

Different GRMHD codes use different formulations
of the GRMHD equations. For instance, there ex-
ist differences between formulations of harm3d and
GRHydro, and these differences are discussed in Ap-
pendix A of [10]. We present only the formulation
used in harm3d here. The equations of motion (EOM)
derive from the local conservation of baryon num-
ber density, the local conservation of 4-momentum,
and the induction equations from Maxwell’s equa-
tions (please see [9] for more details). They take the
form of a set of conservation laws:

∂tU (P) = −∂iFi (P) + S (P) (2)

where U is a vector of the conserved variables, Fi are
the fluxes, and S is a vector of source terms.

U (P) =
√
−g
[
ρut, T tt + ρut, T tj , B

k
]T

(3)

Fi (P) =
√
−g
[
ρui, T it + ρui, T ij ,

(
biuk − bkui

)]T
(4)

S (P) =
√
−g
[
0, TκλΓλtκ −Ft, TκλΓλjκ −Fj , 0

]T
(5)

where g is the determinant of the metric, Γλµκ are

the metric’s Christoffel symbols, Bi =
∗
F
it
/
√

4π is
our magnetic field (proportional to the field measured
by observers traveling normal to the spacelike hyper-
surface),

∗
F
µν

is the Maxwell tensor, uµ is the fluid’s
4-velocity, Fµ = Luµ is the flux of radiative leak-
age, L is the fluid-frame rate of energy radiated away
(by photons), bµ = 1

ut (δµν + uµuν)Bν is the mag-
netic 4-vector or the magnetic field projected into the
fluid’s co-moving frame, W = ut/

√
−gtt is the fluid’s

Lorentz function, Tµν is the MHD stress-energy ten-
sor defined as

Tµν = (ρh+ 2pm)uµuν +(p+ pm) gµν−bµbν , (6)

pm = bµbµ/2 is the magnetic pressure, ρ is the rest-
mass density, h = 1 + ε + p/ρ, p is the gas pressure,
and ε is the specific internal energy. The “primitive”
variables are P =

[
u, ρ, ui

]
. The system is closed

with the ideal-gas equation of state: P = (Γ− 1) ρε.

In harm3d, the EOM are integrated using mod-
ern high-resolution shock-capturing finite volume
schemes. Volume averages are integrated forward in
time. Left and right values of P are found with shock-
capturing piecewise parabolic interpolation. The
fastest characteristic wave speed at each cell inter-
face is used in a Lax-Friedrichs-like flux formula.
The FluxCT constrained transport scheme is used to
maintain the absence of magnetic monopoles [11, 12].
After the conserved variables are advanced in time,
the primitive variables are recovered by inverting the
set of nonlinear algebraic equations U = U(P) via a
Newton-Raphson procedure. Physical boundary con-
ditions are employed at the edges of the global do-
main. The simulation is parallelized by decomposing
the global domain into subdomains that are assigned
to individual MPI tasks. Ghost zone data is shared
between neighboring subdomains so that there is suf-
ficient boundary information available for a MPI task
to integrate in time its volume’s worth of data locally.

The Christoffel symbols are calculated from deriva-
tives of the metric:

Γµνκ =
1

2
gµσ (∂νgκσ + ∂κgνσ − ∂σgνκ) . (7)

For simulations of accretion disks about binary black
holes, we use a high-order Post-Newtonian approxi-
mation that leads to lengthy expressions for the met-
ric components. Finding closed-form expressions of
the Christoffel symbols can only be accomplished us-
ing symbolic manipulation software. We avoid this
approach as it will likely be far less efficient that our
method of choice, which is to calculate Eq.7 via fi-
nite difference approximation for both space and time
derivatives.
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B. General Relativistic Radiative Transfer

In order to predict the radiative emission from a
disk simulation, one needs to know how the light trav-
els through the curved spacetime and how its energy
spectrum evolves. These two aspects are described,
respectively, by the geodesic equations of motion and
the radiative transfer equation.

In the theory of general relativity, light travels on
curved paths. These paths are determined by the
geodesic equations, which can be cast into a set of 8
first-order linear ODEs:

nµ =
∂xµ

∂λ
, (8)

∂nµ

∂λ
= −Γµνκn

νnκ , (9)

where nµ is the 4-velocity of a photon (or collection of
photons), xµ(λ) are the coordinates of its worldline
(or trajectory), and λ is the affine parameter that
parameterizes points along the curve.

The Lorentz invariant radiative transfer equation
is

∂I

∂λ
= j − αI , (10)

where I, α, and j are the Lorentz invariant inten-
sity, absorption coefficient, and emissivity, respec-
tively, and Iν , αν , and jν are the values measured
by some observer that measures the photon to have
frequency ν. The relationship between these two sets
of quantities is

I =
Iν
ν3

, (11)

j =
jν
ν2

, (12)

α = ανν . (13)

Here, we have chosen the affine parameterization such
that

∂xµ

∂λ
= uµ =⇒ K = − 1

cν
vµu

µ = 1 , (14)

where vµ is the 4-velocity of a local timelike observer
that measures the photon’s frequency to be equal to
ν. The expression for dλ with respect to ua is:

dλ =
vµdx

µ

vνuν
=
vµdx

µ

−νc
. (15)

For integrations of bolometric luminosity, the ab-
sorption term in the radiative transfer equation

is sometimes ignored and emissivity is integrated
through the entire domain or only up from the photo-
sphere. The photosphere location is surface at some
number of optical depths from the camera. We can
easily identify the optical depth τ as integrals in the
exponents:

τ(λ) = K

∫ λ

λ0

αdλ̂ . (16)

It is interesting to note, that the optical depth is
actually a Lorentz invariant:

dτ = Kαdλ =
Kα

Kν
ds =

α

ν
ds = αν ds = dτν (17)

In bothros, the geodesic equation is integrated
from the simulated camera back in time through the
simulation volume. This is because geodesics follow
nontrivial paths that are difficult to predict. If one
chooses to integrate the geodesics forward in time
from the source to the camera, one would need many
more geodesics to achieve the equivalent resolution.
Once a geodesic is found, simulation data is interpo-
lated along it and the radiative transfer equation is
integrated forward in time back towards the camera.

The integration of the radiative transfer equation
demands we read in every 3-d snapshot of simulation
data from disk and communicate it to those proces-
sors performing the ray tracing. The entire procedure
involves the following tasks:

• Evaluate the metric at various spacetime
points;

• Use finite differences of the metric to calculate
the right-hand side of the ODEs;

• Use a variable stepsize ODE integrator (e.g.,
Burlisch-Stoer) to solve the 8 coupled ODEs of
the geodesic equations;

• Interpolate simulation data along the ray;

• Calculate the absorption and emissivity coeffi-
cients from the interpolated simulation data;

• Integrate the radiative transfer equation for the
observed intensity;

• Output the intensity for each ray.

III. FINDINGS AND ACHIEVEMENTS

A. harm3d

As our primary research focus on Blue Waters has
shifted to projects involving harm3d, we have concen-
trated our efforts to accomplish its goals first. We will
therefore spend the bulk of our discussion on harm3d
developments.
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1. Load Balancing

Unlike our previous calculations [13], our next gen-
eration of circumbinary accretion disk simulations on
Blue Waters place the black holes on the numerical
domain. The metric is calculated using different ap-
proximations depending on the cell’s proximity to the
black holes:

• Inner Zone (IZ): the immediate volume about
each black hole;

• Near Zone (NZ): the volume encompassing the
binary out to a finite radial distance from the
binary’s center of mass;

• Far Zone (FZ): the volume beyond the NZ to
infinity.

The metric in the IZ is that of a distorted single
black hole; the metric of the NZ is a high-order Post-
Newtonian approximation to a binary spacetime; and
the metric of the FZ is that of flat space plus a wave
perturbation. They are stitched together in buffer
regions using transition functions. In these buffer
zones, both neighboring metrics need to be calcu-
lated. In terms of computational effort, the IZ metric
evaluation is about four times as expensive as that of
the NZ. The FZ metric is approximately as costly as
the NZ metric. Our profiling measurements indicate
that the metric evaluation is—by far—the most ex-
pensive part of the calculation, so the metric’s com-
putational cost is an accurate indicator of a partic-
ular cell’s contribution to the entire simulation’s ef-
fort. The original version of harm3d was hard-coded
to decompose the global domain uniformly across the
MPI tasks. Since the different zones vary in cost
by factors of several and these zones are localized in
space, then a uniform decomposition scheme would
produce a significantly imbalanced load distribution
across the MPI tasks. We aim to alleviate this imbal-
ance by considering the distribution of cost over the
domain when decomposing the domain, resulting in
a nonuniform (in terms of number of cells per MPI
task) decomposition.

In order to profile the cost of each zone’s metric
evaluation, we performed a series of simulations of
a single black hole (a “Kerr” black hole) surrounded
by a disk of magnetized gas. We compared the per-
formance of this control simulation to two others:
the “Kerr+NZ” case where we added a call to the
routine that calculates the NZ metric alone, and the
“Kerr+NZ+IZ” cases where we added a call to the
routine for calculating both the NZ and IZ metrics.
These additional calls had no purpose other than to
measure the impact on the simulation’s runtime. We
measured the runtime rate or number of zone-cycles
(or cell updates) performed per floating point proces-
sor (FPU, or Bulldozer core) per second (aka “zone-

cycles/sec/FPU”). The comparisons are illustrated in
Figure 1. We find that the “NZ+IZ” calculation can
cost approximately a factor of three times that of the
NZ-only calculation. Incidentally, we find very little
difference in performance between the Cray and PGI
compilers.

FIG. 1: Runtime efficiency or update rate of harm3d’s
performance in terms of zone-cycles per second per core
when using different compilers (Cray or PGI), code
versions (“Dynamic” or “Static”), and metric routines
(“Kerr,”, “Kerr+NZ,” or “Kerr+NZ+IZ”). “Static” and
“Dynamic” refer to the different version of harm3d that—
respectively—involve static and dynamic memory alloca-
tion.

A first step of implementing our nonuniform de-
composition procedure was to switch from static
memory allocation in harm3d to dynamic memory al-
location. This required surveying the entire source
code and rewriting a major portion of it. We antic-
ipated that dynamic memory allocation would have
a slight detrimental impact on our runtime efficiency
as the compiler no longer has the freedom to opti-
mize with respect to array dimensions. Surprisingly,
we find that the dynamic version performs as well
as—and sometimes better than—the static version
(Fig. 1). The performance results encourage us to
use the dynamic version for even the uniform decom-
position runs as there are other advantages to using
it, e.g., no need to recompile the code when chang-
ing the simulation’s resolution or the number of MPI
tasks. Also, we note that the static version of the
code would suffer a segmentation fault when com-
piled with the default optimization settings of the
Cray compiler. For the “Cray Static” run of Fig. 1,
we were forced to use a less aggressive set of compiler
options, which is why that run performed so much
worse that the others. The change to dynamic mem-
ory allocation somehow cured this problem; the cause
of it still remains elusive to us.
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Our load balancing procedure first assumes that
the computational cost per cell is known, so that a
subdomain’s total cost can be easily calculated by
taking the sum over all its cells. The algorithm is
rather simple:

1. Start with the global domain undivided;

2. Order the subdomains by cost;

3. Bisect the most expensive domain along its
longest extent;

4. Assign a new MPI task to one of the new sub-
domains, while keeping the original MPI task
assigned to the other;

5. Determine the neighbors of the two new subdo-
mains;

6. Repeat Steps 2 - 5 until all processors have been
assigned or an adequate load distribution has
been achieved.

There are several advantages to this algorithm. First,
we are likely to have a relatively even load balance
with any number of MPI tasks; for instance, uni-
form decompositions require that the number of sub-
domains is an integer factor of the number of cells.
Second, bisecting a subdomain’s longest dimension
favors subdomains with smaller ratios of surface area
to volume, thereby minimizing the relative amount
of inter-domain communication. Third, its simplic-
ity minimizes the risk of errors in its development
and allows us to refine the procedure after some time
experiencing its performance.

FIG. 2: Top row: illustrations of domain decomposition,
with colors used to differentiate adjacent subdomains.
Middle row: relative cost offset (Ri) distribution over sub-
domains. Bottom row: linear color map used in the mid-
dle row’s plots, ranging over [−4, 4] in terms of Ri. Left
column: uniform decomposition. Right column: nonuni-
form decomposition using our load balancing algorithm.
In both decompositions, 256 MPI tasks were used.

Before implementing the full load balancer within
harm3d, we performed a simulated test of the algo-
rithm in a standalone program. The test constrained

the decomposition to only two spatial dimensions.
An illustration of its performance is given in Fig. 2.
Note that the relative cost offset used to visualize the
load imbalance is defined as

R̃i =
Ci − C̄
C̄

(18)

where Ci is the cost of ith subdomain, and C̄ is the
average cost per subdomain. We find that the algo-
rithm is rather successful. The nonuniform decompo-
sition results clearly show how smaller domains cover
the costlier regions while the larger domains cover the
less costly regions, leading to a significantly more bal-
anced distribution over the uniform decomposition.
We also note that we are likely to maintain a two-
dimensional cost distribution as the costliest IZ re-
gions (about each orbiting black hole) move through
the grid several dozens of times over the course of a
simulation. Rebalancing the load as the black holes
move would likely cost more overhead than what it
would save, and would require significantly more de-
velopment effort. We therefore intend to average the
3-dimensional spatial cost distribution in time, which
results in a 2-dimensional cost distribution as the
black holes primarily move along one spatial dimen-
sion.

FIG. 3: Ratio of the runtime rates between a given de-
composition method and uniform decomposition versus
the number of processors (or subdomains) for a variety of
decomposition models: perfect load balance (black exes),
2-d nonuniform decomposition (red triangles), and 3-d
nonuniform decomposition (blue squares). The global
number of cells used in this simulated scaling experiment
was kept fixed as the number of cores/subdomains were
increased. Saturation of the 2-d nonuniform method oc-
curs at 1000 cores.
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Even though we intend to constrain the cost distri-
bution to two spatial dimensions, we will still allow
for nonuniformly decomposing the the subdomains in
all three spatial dimensions. The additional degree of
freedom to bisect the subdomains is necessary to scale
our code to more than 103 cores with a balanced load.
The advantage of 3-d nonuniform decomposition is
seen in Figure 3. Here we plot the speedup in update
rate over uniform decomposition method for three
different cases: 1) perfect load balance where the
global load is exactly evenly split amongst the cores
(exes); 2) nonuniform decomposition in 2-dimensions
with the third dimension uniformly decomposed (tri-
angles); 3) nonuniform decomposition in all three di-
mensions (squares). The speedup is measured as the
ratio of the rates of the slowest subdomain for a par-
ticular decomposition to the rate of the slowest sub-
domain from a 3-d uniform decomposition. We find
that the 2-d nonuniform decomposition saturates at
a particular FPU count and becomes no better than
uniform decomposition. The saturation is caused by
the discrete limit in grouping an integer number of
cells; we set the minimum extent a subdomain’s di-
mension can have to be 12 cells. If this limit were any
smaller, a subdomain of this minimum size would be
communicating nearly its entire volume as ghost zone
data to neighboring subdomains—leading to a pro-
hibitive communication load. The minimum extent
constraint limits the 2-d nonuniform decomposition
algorithm from adequately load balancing. That is,
once the 2-d nonuniform method saturates, the most
expensive subdomain will have this minimum extent
in the 2-dimensions and so cannot be subdivided fur-
ther to improve the load balance. With 3-d nonuni-
formity, we can subdivide its third dimension nonuni-
formly and continue to balance the load. We note
that the perfect limit is likely unreasonable as we are
constrained to discretely partition the load and main-
tain block-shaped subdomains. Even though the 3-d
nonuniform decomposition is not at the ideal limit,
it can reach a factor of two speedup over the uniform
scheme. This remarkable speedup factor is even seen
with our use of a cost imbalance that is less severe
than what the latest profile suggests we will see in
practice (Fig. 1). Our results have encouraged us to
begin implementing the load balancer within harm3d.

2. Performance on Blue Waters

As we developed the load balancing infrastructure,
we performed a variety of scaling experiments on Blue
Waters. Our results present a baseline from which to
improve, and they inform us how we may best tailor
our code’s execution on Blue Waters. We performed a
weak scaling test, wherein the per core load was held
constant while the global problem size increased with

core count; and a strong scaling experiment, wherein
the per core load decreased with increasing core count
while the global problem size was held constant. The
calculation involves a circumbinary magnetized disk
using the NZ metric, using the same initial conditions
of [13]. The small problem size used in the strong
scaling experiment is the same resolution as that of
the production runs reported in [13], while the large
problem size series uses 8 times the number of cells
or twice the number of cells per dimension. Each run
lasted for an hour to minimize the influence a run’s
initialization has on its total runtime; this initializa-
tion procedure never exceeds 50 seconds and is most
often about 30 seconds long.

FIG. 4: Ratio of update rates between a given case and
the smallest core count instance versus total core count for
two different per subdomain cell extents and two different
compilers: 16 × 16 × 16 (black), 20 × 16 × 25 (blue), PGI
compiler (squares), Cray compiler (exes).

The weak scaling tests use two different per core
subdomain dimensions: a symmetric one with 16 ×
16×16 cells, and an asymmetric one with 20×16×25
cells (Figure 4). Note that the subdomain extents are
listed in the order of outermost loop to innermost
loop (i.e. the last dimension is the “fastest” running
dimension). This test primarily measures the perfor-
mance of the MPI communication routines and how
efficiently they are at sharing data between proces-
sors as the total core count increases, while keeping
most everything else held fixed. We note that there
is a subtlety with the weak scaling test in that even
though two points with the same core count have
the same number of cells, the global number of cells
per dimension may be different. This difference af-
fects the physics of the simulation (e.g., the height of
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the disk may be better resolved in one run while the
other’s disk’s radial extent is better resolved) which
then could affect the runs’ runtime rates (e.g., a more
rapidly changing region will have a harder time re-
covering its primitive variables). It can also affect
the mapping between location in the problem space
and the cluster node on which it lives. Because of
asymmetries in Blue Waters’ interconnect, this differ-
ence in task distribution may alter the runtime per-
formance. We find that the symmetric case performs
worse in general than the asymmetric configuration.
One reason could be that each core has more work
to do in the asymmetric case (the number of cells
per core is larger in this case), so these runs have
less communicating to do compared to their intracore
computation. Another reason is that the asymmetric
case has a larger extent in the fastest loop dimen-
sion and so can vectorize more operations. And, it
appears as though the asymmetric runs exhibit less
scatter for the same core count, implying that there
is less of an effect from the global resolution and/or
task distribution over the interconnect. The increase
in runtime performance at large core counts indicates
that more attention needs to be paid to harm3d’s par-
allel performance for very large runs.

FIG. 5: Update rates versus core count for two different
problem sizes and two different compilers: 300×160×400
(black), 600 × 320 × 800 (blue), PGI compiler (squares),
Cray compiler (exes).

The strong scaling experiments demonstrate how
effective the code and the cluster act in concert to
divide a problem of fixed size (Figures 5 - 6). In the
test, we have often chosen multiple ways of decom-
posing the domain across the given number of cores,
in order to see if the way we decompose the domain

FIG. 6: Ratio of update rates between a given case and
the smallest core count instance for the strong scaling test
of Fig. 5.

has an affect. We find that both problem sizes follow
similar trends which indicates that the differences in
the physical problem are not significant, consistent
with the weak scaling results. From the vertical scat-
ter in the plots, we find that different domain decom-
positions lead to a variation of runtime performance
of a few percent, suggesting that it is not a significant
contributing factor. For each problem size, we find
that it takes an order of magnitude increase in core
count to yield a 75% performance penalty. This level
of scaling efficiency is surprisingly good as no special
accommodation was made to optimally distribute the
runs over the cluster’s interconnect; using Cray’s ad-
vance task placement tools may significantly improve
this performance. For example, it could be that the
tasks were distributed remotely across the intercon-
nect’s 3-d torus topology. Some other PRAC teams
report better scaling performance using similar codes,
indicating to us that additional investigation could
produce improved performance.

B. bothros

Even though post-processing harm3d simulation
data with bothros costs only a small fraction of the
particular simulation’s computational cost, the ray-
tracing procedure—as it currently stands—will not
scale to much larger problem sizes than we currently
use. The primary bottleneck is reading data from the
Lustre filesystem. Previous simulations typically use
10 TB of storage, with future runs projected at sev-
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eral times this. Since bothros is currently a serial
code, ray tracing involves multiple redundant reads
of the data from disk with as different instances must
read the data independently. The primary goal of our
parallelization of bothros is to dramatically reduce
the number of times a simulation time slice (i.e. 3-d
volume of grid function values) is read.

The size of the problem is based on how many light
rays we integrate. We integrate a series of level sets or
synchronous planes of photons from different vantage
points at the same radius. Each plane of photons is
composed of Nx × Ny pixels or points of origin for
photons. There are Nt snapshots per vantage point.
There are Nθ ×Nφ vantage points. Each ray-tracing
run therefore requires Npixels = NtNxNyNθNφ. Typ-
ical numbers are Nx = Ny = 300, Nφ = 2, Nθ = 8,
Nt = 2000, or Npixels ' 3 × 109 photons. In the
original version of the code, each snapshot is decom-
posed into frames or sets of photons so that the com-
putation can fit into memory. In our new scheme,
each distribution of effort will be some segment in the
space of Nx×Ny×Nt×Nθ×Nφ. We let (i, j, n, l,m)
index a photon over Nx×Ny×Nt×Nθ×Nφ space, re-
spectively, where decomposition of effort is performed
slowest to fastest going from the leftmost to the right-
most dimensions or indices. This way the photons
local in memory will also more likely be closer in
spacetime as well, which will minimize the amount
of simulation data needed by the local MPI task.
Note that each photon represents a geodesic path
along which simulation data must be interpolated,
and along which the radiative transfer equation is
integrated back to the camera to take a particular
time’s snapshot.
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FIG. 7: Strategy 1: Diagram of how different units or
roles are assigned to threads or MPI tasks, how they com-
municate information, and how they are distributed over
nodes. Grey boxes indicate nodes, and the colored rectan-
gles represent the units (threads or MPI tasks) assigned
to that node. In this strategy, only one unit is assigned
per node and a role’s responsibilities are distributed on
the node via OpenMP threads. Units communicate with
each other using simple non-threaded MPI calls (black
arrows).
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FIG. 8: Strategy 2: Diagram of how different units or
roles are assigned to threads or MPI tasks, how they com-
municate information, and how they are distributed over
nodes. Grey boxes indicate nodes, and the colored rect-
angles represent the units (threads or MPI tasks) on that
node. In this strategy, units are assigned to threads on
each node. Internode communication (between IOUs) is
performed via MPI calls from a specified thread (black
arrows). A node’s CU threads retrieve data from other
nodes through exchanges with that node’s IOU thread
(magenta arrows). This way, there is only one thread
that performs MPI calls.

We have developed two strategies for parallelizing
a bothros run, illustrated by diagrams in Figures 7 -
8. The strategies define an MPI task or OpenMP
thread to have one or more of three possible roles:

• Master Unit (MU): responsible for evaluating
the problem size, assigning units their roles, in-
forming the IOUs what data is available, writ-
ing the results to disk, and ending the run;

• I/O Unit (IOU): responsible for reading data
from disk, serving it to CUs, and cycling
through the available time slices on disk while
coordinating with other IOUs to prevent redun-
dant reads;

• Compute Unit (CU): responsible for asking and
receiving data, integrating the geodesic and ra-
diative transfer equations, and return the re-
sults of the ray tracing to the MU;

Each unit or role will be assigned a subset of the
computational tasks. A processor may have more
than one unit’s worth of duties (e.g., the MU may also
be an IOU). The MU, once performing managerial
duties at the beginning of a run, will be assigned
IOU tasks. CUs will likely always perform CU duties
and not share in other roles.
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We have tested the threading procedure for Strat-
egy 2 (Figure 8) without the MPI communication
step implemented and with only one node. Specif-
ically, we parallelized the computation step with the
with disk read step via OpenMP directives, so that
other threads may process the current one while the
next time slice’s data is read in. What remains to be
written is the infrastructure code to handle the MU
duties and IOU communication routines. Our plan is
to finish this development while our harm3d produc-
tion simulations run on Blue Waters so that it will
be ready once the data is available.

C. GRHydro

The GRHydro code contained within the Ein-
stein Toolkit is a publicly available set of routines
that can evolve the equations of general relativistic
hydrodynamics (GRHD) or magnetohydrodynamics
(GRMHD) [14]. It builds upon other functionality
contained within the Toolkit, including routines that
provide grid-based structures, parallelization infras-
tructure, data I/O and analysis routines, as well as
scientific modules that provide the underlying evo-
lution system for the spacetime metric itself (while
the evolution set for the latter is similar in some
ways to the set describing hydrodynamical evolu-
tion, the smooth nature of the fields allows for simple
and easily implemented finite-differencing techniques
that are not applicable to non-smooth fluid configu-
rations). In the past year, the Einstein Toolkit con-
sortium released a new version of the code that in-
cludes many new routines for simulating MHD for
numerical relativity applications [10]. Some of our
PRAC team members were integral to the develop-
ment of this code. As it was written, much attention
was paid to the incorporation of threading (OpenMP)
throughout the new GRHydro modules.

IV. SUMMARY AND CONCLUSION

In this report, we have presented a description of
the many significant accomplishments made toward
our Subaward PRAC project. Our harm3d results
demonstrate satisfactory progress toward performing
efficient calculations of circumbinary accretion disks
around supermassive black holes. Our nonuniform
decomposition algorithm was demonstrated to func-
tion as expected with significant improvement in load
balance for approximate models of the cost distribu-
tion. Current work is underway to incorporate the
load balancer in our new dynamic memory allocation
version of harm3d. Further, strong and weak scal-

ing experiments were performed to demonstrate the
parallel efficiency of harm3d. Its performance is ade-
quate, but additional avenues (e.g., advanced place-
ment tools, profiling of MPI calls) need to be explored
that may result in improved performance. In addi-
tion, we have described our parallelization strategies
for bothros, and are underway at implementing these
ideas.

There are a variety of future directions that can
be explored. First, once all the new pieces are imple-
mented in harm3d, an extensive set of scaling and pro-
filing experiments will be run on Blue Waters using
production-level simulation configuration to evaluate
harm3d’s ultimate performance. Additional adjust-
ments to MPI calls or the load balancer will likely be
needed once these experiments have been performed.
Utilizing Cray vast pool of tools will be critical in
this phase. Second, regarding the load balancing
procedure, it would be convenient to have infrastruc-
ture in place for measuring a subdomain’s computa-
tional cost (e.g., with timers embedded throughout
the code). With such a scheme, a simulation could
measure its performance and redecompose its domain
based on this data automatically. Further, such a
scheme could potentially adapt for a heterogeneous
computing environment, placing less load on slower
nodes. Cell scale cost data may be hard to mea-
sure reliably with timers, so we will need to explore
ways in which we can use subdomain-scale measure-
ments to inform us about the cell scale performance.
Third, even though preliminary tests imply thread-
ing certain routines in harm3d does not provide sub-
stantial improvement in performance, further exper-
iments should be made to be sure. Possibly, gains
will only be dramatic for the largest runs at scales
not explored in our initial tests.
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