
Towards Implementation of the Colorado State University Global
Cloud Resolving Model on the NSF Blue Waters System

David Randall and Ross Heikes

Department of Atmospheric Science, Colorado State University

Abstract

The Randall team has ported key components of the Colorado State University
(CSU) Global Cloud Resolving Model (GCRM) to the Blue Waters system. With the
model on Blue Waters there are two levels of parallelism to explore. The first is a coarse
grain MPI based communication between computational cores. This parallelism works in
conjunction with our global domain decomposition. The team's results show scaling
characteristics of the Blue Waters system to 40K cores, and include comparisons with
other computer systems. The second level of parallelism is a fine scale parallelism
which utilizes the NVIDIA Kepler accelerators. This loop based parallelism directly
modifies the numerical operators used within the model. The team has shown that the
parallel efficiency of the accelerator strongly depends on the problem size, and has
devised modifications to the model to better utilize the accelerators.

Introduction

This report will have three main parts. First we include some background material
discussing the model grid, domain decomposition and model equations. Second we
include some timings that show the strong scaling characteristics of the MPI based
code. And third we show modifications to the code to utilize accelerators.

Grid Background

Here we describe the horizontal grid structure used within the CSU GCRM. Our
model is based on an icosahedral grid. We use a horizontal domain decomposition to

achieve coarse grain parallelism using MPI. Figure 1a shows an icosahedron projected

to the sphere. It consists of 20 spherical triangles. Joining adjacent pairs of spherical
triangles will form 10 quadrilateral shapes that cover the sphere. This is shown in figure
1b. Each of the 10 quadrilateral regions can be partitioned into four regions as shown in
figure 1c. We can continues this process to partition the surface of a sphere.

An recursive algorithm similar to the above domain decomposition algorithm is used
to generate the locations of the model control volumes or cells. Cells are assigned to
MPI tasks using the above domain decomposition. Figure 2 shows a grid with 642
partitioned into blocks with 64, 16 and 4 cells. Figure 2a corresponds to figure 1b. We
call these blocks subdomains. Note that the subdomains are logically rectangular and

can be stored in conventional 2D arrays. A Morton style numbering of the subdomains
and the cells within a subdomain allows physically contiguous subdomains to be also
logically close. Numerical finite-difference operators require information from
neighboring subdomains to fill ghost cells or halo cells. The information to update
boundaries is communicated between blocks using MPI non-blocking sends and
receives.

The actual resolution of the model used for numerical simulations has several

million cells in each horizontal layer. Table 1 shows the horizontal model resolutions
used in this study. The first column show the recursion depth of the algorithm used to
generate the grid. Each recursion increases the number of cells by about a factor of
four from the previous resolution. The table shows resolutions 9 through 12. These are
our target resolutions. This number is used to refer to a particular grid resolution in the
following text. The table also shows the global number of cells, and an approximate
grid spacing between cell centers. The model is typically run with 32 to 256 layers in
the vertical direction.

Model Background

Our model predict vorticity and divergence as prognostic variables. In order to
calculate the actual wind for purposes of scalar advection, we need a stream function
and a velocity potential. The vorticity ζ and the stream function ψ are related through

the elliptic equation ∇2ψ = ζ . Similarly, the divergence δ and the velocity potential χ

are related through the elliptic equation ∇2χ = δ . The equations for stream function and
velocity potential are solved every time step, so an efficient solution is very important.
The elliptic equations are solved with 2D multigrid in each model layer. We have
determined that the smoothing operator within the multigrid algorithm consumes a
significant portion of the total model run time. This will be our first target for
improvement. For example, we have run the model to simulate an idealized tropical
cyclone with simplified physics. This simulation was run with a global resolution of
about 16km on 160 cores. In this case, the smoothing operator on the finest grid
accounts for about 11.5% of the total computation. This percentage is approximately
constant for varying grid resolution and number of cores. It is a very significant portion
of total time considering the numerous other physical processes in the model.

MPI Timings

resolution
(r)

global number
of cells

global grid point
spacing (km)

9 2,621,442 14.99

10 10,485,762 7.495

11 41,943,042 3.747

12 167,772,162 1.874

Table 1. Target grid resolutions, number of cells and grid spacings.

We have investigated the strong scaling characteristics of the 2D multigrid with a
series of numerical experiments. In these experiments the multigrid code was run in

standalone mode with varied resolution and number of MPI tasks. Figure 3 shows the
results of these experiments. The plots show the time required to perform 10 multigrid
V-cycles with 32 vertical layers with 40 to 40960 MPI tasks. Each blue line shows a
particular grid resolution for grids 9, 10, 11 and 12. The red lines show the idealized
speed-up. For this comparison we ran the code on Blue Waters, Hopper and Edison.
Hopper and Edison are at the National Energy Research Scientific Computing Center
(NERSC). Hopper is a CRAY XE6 and Edison is a CRAY XC30. On Blue Waters the
CRAY compiler is about twice as fast as the PGI compiler, however the PGI compiler
seems to scale better. Hopper shows better scaling characteristics than Blue Waters
and scales well to 40K cores. Edison scales well and is faster than Blue Waters and
Hopper, however the current configuration is limited to about 10K cores.

We can gain some insight into these scalings by examining how long each core
takes to complete a global boundary update. For grid 11 we ran a standalone version of
the global communication code for ghost cell updates with 2560, 10240 and 40960
cores. We timed the total time and time to compete portions of the MPI code. This is

shown in Figure 4. Each figure shows the time per model column. Ideally this should
constant and independent of number of cores. The data are sorted according to total
time into increasing order as shown by the red line in each plot. The yellow line is the
time spend in the MPI_WAITALL routine, and the blue line is the time spent in the
MPI_ISEND routine. Other routines are included in the timing but they are insignificant.
For 2560 cores the total time is somewhat constant for all cores, and the wait time is
small compared the the time to initiate sends. For 10240 cores the discrepancy in times
dramatically changes. The fastest times stay fairly consistent, but the longest times
dramatically increase. There are a relatively small number of outliers that are more than
three times slower than the fastest time. The increase is primarily due to the time spent
waiting for messages to complete. Since all the cores must wait for the slowest cores to
complete, these cores dominate the overall timings. With increasing number of cores
there is greater likelihood that physically close cores are not close within the computer
network. It is difficult to control the network distribution of cores within the machine, but
better control could improve this discrepancy.

ACC implementation

Our goal is to create a version of the two-dimensional elliptic solver used in the CSU
icosahedral grid atmospheric dynamical core that utilizes the GPUs on Blue Waters.
The most computationally intensive portion of the multigrid algorithm is the relaxation
operator. The relaxation operator is global so it requires MPI communication between
subdomain blocks as well as nearest neighbor communication within a subdomain

block. We have performed several numerical experiments using the relaxation operator

to better understand its behavior. This block of code is shown schematically in Figure 5.

The ACC data directive transfers information about the entire subdomain block
from the CPU to the accelerator. The outer loop determines the number of relaxation
sweeps. The blue box labeled MPI communication represented the global message
passing between subdomain blocks. After the global MPI communication it is only
necessary to communication the edges of subdomain blocks before the next global
communication. With the ACC update directive only the edges of subdomain blocks
are transferred between the CPU and the GPU. Data are moving between the CPU and
the GPU through the PCI Express bus. The transfer is a relatively slow computational
bottleneck, but once the data are on the GPU using them in calculations is very efficient
relative to the CPU. By loading (or unloading) the appropriate modules and altering the
makefile to include the appropriate compiler directives, the relaxation sweep will be
performed on either the CPU or the accelerator.

The efficiency of a relaxation sweep depends on the the size of a subdomain block.
To demonstrate this we show numerical experiments comparing results with varying
subdomain size. In the experiments the subdomain sizes have a horizontal extent of
32×32 and 64×64, and both cases have 32 layers in the vertical. We would like each
core to have a 16×16 or 32×32 block cells in order to achieve our target level of

parallelism Larger blocks will not allow enough cores. If we consider the 32×32×32
block of cells, the ratio of the surface area to the volume is 1/8. In other words, the ratio
of the edge cells to all cells is 1/8. This ratio is a measure of parallel efficiency. That is,
within a relaxation sweep 8 cells are updated for each cell data transfer between CPU
and GPU. Since a relaxation sweep cell update is useful work and the transfer is not
useful work, a smaller ratio is more desirable. So, we would expect the 64×64×32
block, with a surface area to the volume of 1/16, to be more efficient.

Figure 6 shows timings for these two subdomains sizes as a function of number of
relaxations sweeps. For the case with 32×32×32 subdomains and one relaxation
sweep, we can see the latency resulting from data transfer causes a sweep on the GPU
to take twice the time of the CPU. After this initial penalty the timings on both the CPU
and the GPU scale more or less linearly with the number of sweeps. With this parallel
efficiency the GPU are only marginally faster than the CPU, and with the initial latency,
the GPU is only faster than the CPU after four sweeps. Four sweeps is about what is
required for sufficient smoothness within the multigrid solver, so in this case it is
questionable if there any benefit from using the GPU. This problem will become more
acute for coarser grids within a multigrid v-cycle as the subdomain blocks become
smaller. Next consider the case with 64×64×32 subdomains. The time per sweep on
the CPU is increased by a factor of 3.7 compared to the 32×32×32 subdomains.
However, because of the improved parallel efficiency, the time per sweep on the GPU is
increased by a factor of only 2.4. And, the time for four sweeps on the GPU is
considerably faster than the CPU. So, in this case, the use of the GPU within the
multigrid might have some benefit. We are experimenting with a data transpose to
allow both a relatively large number cores and subdomains with larger horizontal extent

This is shown in Figure 7. Each application of the transpose doubles the horizontal
extent of subdomain. A transpose can be performed during each grid coarsening within
the multigrid v-cycle. The coarsening and transpose can be combined into a single
operation.

Conclusions

We have shown the strong scaling characteristics of the large scale parallelism on
Blue Waters, and made comparisons with other computer systems. We have
speculated that reduced scaling efficiency results from discrepancy in time to complete
message passing. It would be interesting to quantify the correlation between physical
adjacency and message passing time.

We have explored the application of accelerators in the 2D multigrid algorithm, and
have shown the that efficiency depends on the size of the problem being solved.

