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Abstract

The Randall team has ported key  components of the Colorado State University 
(CSU) Global Cloud Resolving Model (GCRM) to the Blue Waters system. With the 
model on Blue Waters there are two levels of parallelism to explore. The first is a coarse 
grain MPI based communication between computational cores. This parallelism works in 
conjunction with our global domain decomposition. The team's results show scaling 
characteristics of the Blue Waters system to 40K cores, and include comparisons with 
other computer systems. The second level of parallelism is a fine scale parallelism 
which utilizes the NVIDIA Kepler accelerators. This loop  based parallelism directly 
modifies the numerical operators used within the model. The team has shown that the 
parallel efficiency of the accelerator strongly depends on the problem size, and has 
devised modifications to the model to better utilize the accelerators. 

Introduction

This report will have three main parts.  First we include some background material 
discussing the model grid, domain decomposition and model equations.  Second we 
include some timings that show the strong scaling characteristics of the MPI based 
code.  And third we show modifications to the code to utilize accelerators.

Grid Background

Here we describe the horizontal grid structure used within the CSU GCRM.  Our 
model is based on an icosahedral grid. We use a horizontal domain decomposition to 



achieve coarse grain parallelism using MPI. Figure 1a shows an icosahedron projected 

to the sphere.  It consists of 20 spherical triangles.  Joining adjacent pairs of spherical 
triangles will form 10 quadrilateral shapes that cover the sphere. This is shown in figure 
1b. Each of the 10 quadrilateral regions can be partitioned into four regions as shown in 
figure 1c.  We can continues this process to partition the surface of a sphere.

An recursive algorithm similar to the above domain decomposition algorithm is used 
to generate the locations of the model control volumes or cells.  Cells are assigned to 
MPI tasks using the above domain decomposition.  Figure 2 shows a grid with 642 
partitioned into blocks with 64, 16 and 4 cells. Figure 2a corresponds to figure 1b. We 
call these blocks subdomains.  Note that the subdomains are logically rectangular and 

can be stored in conventional 2D arrays.  A Morton style numbering of the subdomains 
and the cells within a subdomain allows physically contiguous subdomains to be also 
logically close.  Numerical finite-difference operators require information from 
neighboring subdomains to fill ghost cells or halo cells.  The information to update 
boundaries is communicated between blocks using MPI non-blocking sends and 
receives.  



The actual resolution of the model used for numerical simulations has several 

million cells in each horizontal layer.  Table 1  shows the horizontal model resolutions 
used in this study.  The first column show the recursion depth of the algorithm used to 
generate the grid.  Each recursion increases the number of cells by  about a factor of 
four from the previous resolution.  The table shows resolutions 9 through 12.  These are 
our target resolutions.  This number is used to refer to a particular grid resolution in the 
following text.  The table also shows the global number of cells, and an approximate 
grid spacing between cell centers.  The model is typically run with 32 to 256 layers in 
the vertical direction.

Model Background

Our model predict vorticity and divergence as prognostic variables.  In order to 
calculate the actual wind for purposes of scalar advection, we need a stream function 
and a velocity potential.  The vorticity ζ and the stream function ψ are related through 

the elliptic equation ∇2ψ = ζ .  Similarly, the divergence δ  and the velocity potential χ

are related through the elliptic equation ∇2χ = δ .  The equations for stream function and 
velocity potential are solved every time step, so an efficient solution is very important.  
The elliptic equations are solved with 2D multigrid in each model layer. We have 
determined that the smoothing operator within the multigrid algorithm consumes a 
significant portion of the total model run time. This will be our first target for 
improvement. For example, we have run the model to simulate an idealized tropical 
cyclone with simplified physics.  This simulation was run with a global resolution of 
about 16km on 160 cores.  In this case, the smoothing operator on the finest grid 
accounts for about 11.5% of the total computation.  This percentage is approximately 
constant for varying grid resolution and number of cores.  It is a very significant portion 
of total time considering the numerous other physical processes in the model.

MPI Timings

resolution
(r)

global number
of cells

global grid point
spacing (km)

9 2,621,442 14.99

10 10,485,762 7.495

11 41,943,042 3.747

12 167,772,162 1.874

Table 1. Target grid resolutions, number of cells and grid spacings.



We have investigated the strong scaling characteristics of the 2D multigrid with a 
series of numerical experiments.  In these experiments the multigrid code was run in 

standalone mode with varied resolution and number of MPI tasks.  Figure 3 shows the 
results of these experiments.  The plots show the time required to perform 10 multigrid 
V-cycles with 32 vertical layers with 40 to 40960 MPI tasks.  Each blue line shows a 
particular grid resolution for grids 9, 10, 11 and 12.  The red lines show the idealized 
speed-up.  For this comparison we ran the code on Blue Waters, Hopper and Edison.  
Hopper and Edison are at the National Energy  Research Scientific Computing Center 
(NERSC).  Hopper is a CRAY XE6 and Edison is a CRAY XC30.  On Blue Waters the 
CRAY compiler is about twice as fast as the PGI compiler, however the PGI compiler 
seems to scale better.  Hopper shows better scaling characteristics than Blue Waters 
and scales well to 40K cores.  Edison scales well and is faster than Blue Waters and 
Hopper, however the current configuration is limited to about 10K cores.

We can gain some insight into these scalings by examining how long each core 
takes to complete a global boundary update.  For grid 11 we ran a standalone version of 
the global communication code for ghost cell updates with 2560, 10240 and 40960 
cores.  We timed the total time and time to compete portions of the MPI code. This is 



shown in Figure 4.  Each figure shows the time per model column. Ideally this should 
constant and independent of number of cores.  The data are sorted according to total 
time into increasing order as shown by the red line in each plot.  The yellow line is the 
time spend in the MPI_WAITALL routine, and the blue line is the time spent in the 
MPI_ISEND routine.   Other routines are included in the timing but they are insignificant.  
For 2560 cores the total time is somewhat constant for all cores, and the wait time is 
small compared the the time to initiate sends.  For 10240 cores the discrepancy in times 
dramatically changes.  The fastest times stay fairly consistent, but the longest times 
dramatically increase.  There are a relatively  small number of outliers that are more than 
three times slower than the fastest time.  The increase is primarily due to the time spent 
waiting for messages to complete.  Since all the cores must wait for the slowest cores to 
complete, these cores dominate the overall timings.  With increasing number of cores 
there is greater likelihood that physically close cores are not close within the computer 
network.  It is difficult to control the network distribution of cores within the machine, but 
better control could improve this discrepancy.

ACC implementation

Our goal is to create a version of the two-dimensional elliptic solver used in the CSU 
icosahedral grid atmospheric dynamical core that utilizes the GPUs on Blue Waters.   
The most computationally intensive portion of the multigrid algorithm is the relaxation 
operator. The relaxation operator is global so it requires MPI communication between 
subdomain blocks as well as nearest neighbor communication within a subdomain 



block.  We have performed several numerical experiments using the relaxation operator 

to better understand its behavior.  This block of code is shown schematically in Figure 5.

The ACC data directive transfers information about the entire subdomain block 
from the CPU to the accelerator.  The outer loop determines the number of relaxation 
sweeps.  The blue box labeled MPI communication represented the global message 
passing between subdomain blocks.  After the global MPI communication it is only 
necessary to communication the edges of subdomain blocks before the next global 
communication.  With the ACC update directive only the edges of subdomain blocks  
are transferred between the CPU and the GPU.  Data are moving between the CPU and 
the GPU through the PCI Express bus.  The transfer is a relatively slow computational 
bottleneck, but once the data are on the GPU using them in calculations is very efficient 
relative to the CPU.  By loading (or unloading) the appropriate modules and altering the 
makefile to include the appropriate compiler directives, the relaxation sweep will be 
performed on either the CPU or the accelerator.

The efficiency of a relaxation sweep  depends on the the size of a subdomain block. 
To demonstrate this we show numerical experiments comparing results with varying 
subdomain size.  In the experiments the subdomain sizes have a horizontal extent of 
32×32 and 64×64, and both cases have 32 layers in the vertical.  We would like each 
core to have a 16×16 or 32×32 block cells in order to achieve our target level of 



parallelism  Larger blocks will not allow enough cores.  If we consider the 32×32×32 
block of cells, the ratio of the surface area to the volume is 1/8.  In other words, the ratio 
of the edge cells to all cells is 1/8.  This ratio is a measure of parallel efficiency.  That is, 
within a relaxation sweep 8 cells are updated for each cell data transfer between CPU 
and GPU.  Since a relaxation sweep  cell update is useful work and the transfer is not 
useful work, a smaller ratio is more desirable.  So, we would expect the 64×64×32 
block, with a surface area to the volume of 1/16, to be more efficient. 

Figure 6 shows timings for these two subdomains sizes as a function of number of 
relaxations sweeps.  For the case with 32×32×32 subdomains and one relaxation 
sweep, we can see the latency resulting from data transfer causes a sweep  on the GPU 
to take twice the time of the CPU.  After this initial penalty the timings on both the CPU 
and the GPU scale more or less linearly  with the number of sweeps.  With this parallel 
efficiency the GPU are only marginally faster than the CPU, and with the initial latency, 
the GPU is only faster than the CPU after four sweeps.  Four sweeps is about what is 
required for sufficient smoothness within the multigrid solver, so in this case it is 
questionable if there any benefit from using the GPU.  This problem will become more 
acute for coarser grids within a multigrid v-cycle as the subdomain blocks become 
smaller.  Next consider the case with 64×64×32 subdomains.  The time per sweep  on 
the CPU is increased by a factor of 3.7 compared to the 32×32×32 subdomains.  
However, because of the improved parallel efficiency, the time per sweep  on the GPU is 
increased by a factor of only 2.4.  And, the time for four sweeps on the GPU is 
considerably faster than the CPU. So, in this case, the use of the GPU within the 
multigrid might have some benefit.  We are experimenting with a data transpose to 
allow both a relatively large number cores and subdomains with larger horizontal extent  



This is shown in Figure 7.  Each application of the transpose doubles the horizontal 
extent of subdomain.  A transpose can be performed during each grid coarsening within 
the multigrid v-cycle.  The coarsening and transpose can be combined into a single 
operation.

Conclusions

We have shown the strong scaling characteristics of the large scale parallelism on 
Blue Waters, and made comparisons with other computer systems.  We have 
speculated that reduced scaling efficiency results from discrepancy in time to complete 
message passing.  It would be interesting to quantify the correlation between physical 
adjacency and message passing time.

We have explored the application of accelerators in the 2D multigrid algorithm, and 
have shown the that efficiency depends on the size of the problem being solved.


