
Accelerating Nano-scale Transistor Innovation with NEMO5

on Blue Waters

Harshad Sahasrabudhe∗1, Jim Fonseca†3, and Gerhard Klimeck‡2,3

1Department of Physics and Astronomy, Purdue University
2School of Electrical and Computer Engineering, Purdue University
3Network for Computational Nanotechnology, Purdue University

March 31 2014

Abstract

This article details the extension of the NEMO5 nanoelectronics modeling software to take
advantage of the unique characteristics of the Blue Waters system. The simulation capability
of the NEMO family of software has evolved dramatically over the last two decades to include
full device simulations, quantum transport and 3D atomistic simulations of electronic structure
in nanostructures. With those capabilities come increased computational requirements. The
NEMO5 software has been designed to run on large-scale CPU machines and has already been
successful in this regard. This work extends NEMO5’s flexibility to include execution on GPUs
and heterogeneous CPU/GPU systems.

1 Introduction

Relentless downscaling of transistor size has continued according to Moore’s law for the past 40
years. Transistor size will continue to decrease in the next ten years, but foundational issues with
currently unknown technology approaches must be pursued [1]. This downscaling has reached the
range where the number of atoms in critical dimensions is countable, geometries are formed in
three dimensions and new materials are being investigated. As semiconductor devices scale to new
dimensions, the materials and designs become more dependent on atomic details. Under these
conditions we argue that the overall geometry constitutes a new material that cannot be found as
such in nature [2]. Quantum effects such as tunneling, state quantization, and atomistic disorder
dominate the characteristics of these nano-scale devices. NEMO5 is a nanoelectronics modeling
package designed for comprehending the critical multi-scale, multi-physics phenomena through
efficient computational approaches and quantitatively modeling new generations of nanoelectronic
devices as well as predicting novel device architectures and phenomena [3].

2 Approach to NEGF

At the heart of NEMO5’s quantum transport approach is the non equilibrium Green’s function
(NEGF) method which is a computational approach to handling quantum transport in nanoelec-
tronic devices [4]. NEGF has been well established to provide a fundamental connection between
the quantum mechanical (Schrödinger Equation) treatment of electrons and their non-equilibrium
interactions with contact reservoirs and incoherent scattering mechanisms. NEGF is numerically
expensive when applied on atomistic tight binding representations. The empirical tight binding
approach models each atom individually as well as its interactions with nearest neighbors. Because

∗hsahasra@purdue.edu
†jfonseca@purdue.edu
‡gekco@purdue.edu

1

of this, NEGF requires storage, inversion and multiplication of matrices on the order of the num-
ber of electronic degrees of freedom. Parametrization of atomic orbitals is by way of first principle
theories, namely Density Functional Theory.

A well known method to ease the numerical burden is the recursive Green’s function method
(RGF) that allows for limiting the calculation and storage of the retarded Green’s function to
specific matrix blocks (such as only block diagonals and a single block column). Even with RGF,
the computational time scales with the cross sectional area (to the direction of electron flow)
cubed, and linearly with the length of the device. For example, a toy calculation of a 50 nm long
wire with a 3 nm diameter requires for a single energy around 1 TFLOP. Resolution of a device’s
characteristics requires about 1,000 energy points, and this calculation must be repeated perhaps a
dozen times for a full current-voltage sweep. The treatment of a technically relevant finFET device
would require an atomistic resolution of a device with a cross section around 20 × 40nm2, which
includes the core semiconductor and the surrounding gate material. Therefore, it is apparent that
efficient use of large heterogeneous machines is needed to accurately simulate devices of interest to
the community.

2.1 RGF

The Recursive Green’s Function algorithm (RGF)[5] is a scheme for solving the Non-Equilibrium
Green’s Functions (NEGF) for devices. The RGF method has already been implemented in
NEMO5, however, this implementation relies on the Transfer Matrix method, which in turn is
heavily dependent on solving the generalized eigenvalue problem. The Transfer Matrix method is
one approach to solving RGF and was initially used for calculating self energy of the source and
drain leads for the NEGF approach. The self energies describe the effect of the leads on the central
device region, and were then used for calculating Hamiltonian of the device. The use of self ener-
gies of the leads makes the Hamiltonian non-Hermitian. The eigenvalues and eigenvectors of the
device Hamiltonian need to be solved to obtain the electron wavefunctions and energies. However,
the eigenvalue calculation (LAPACK’s ZGEEV) of a general matrix does not scale well on multi-
threaded/distributed systems–in our case GPUs. Thus, the GPU-focused work required a shift to
a different implementation of RGF which utilized only multiplication and inversion of matrices.
The Sancho Rubio[6, 7] and General Leads methods can be used to calculate the self energy of
the leads instead of Transfer Matrix method. These methods primarily use matrix multiplication
and inversion and are therefore good substitutes for Transfer Matrix method when scalability on
heterogeneous systems is desired.

2.2 Sancho Rubio method

Sancho Rubio is an iterative, computationally intensive method with low memory usage which is
prime for GPUs. Self energy of the leads is required for calculating the transmission and charge
density in the device using NEGF. Self energy gives rise to open boundary conditions and is calcu-
lated by assuming semi-infinite leads. Transfer Matrix and General Leads algorithms recursively
solve NEGF equations for adjacent slabs of atoms in the leads to obtain self energy. After a reason-
able number of iterations, the self energy resembles that of a semi-infinite lead. The Sancho Rubio
method [6][7] uses renormalization on NEGF equations and thus requires much fewer iterations to
get a self energy to the same degree of accuracy.

Forward iteration in the NEGF equations or ”Forward RGF” involves sparse-dense matrix
multiplication and matrix inversion. Similarly, Sancho Rubio method requires only these functions.
It is thus inherently compute intensive and well-suited for calculation on GPUs. It also requires
storage of only 13 dense matrices making possible the calculation of self energy for devices of large
cross-sections on GPUs.

2

3 Interfaces to External Libraries

3.1 Numerical Algorithms

Allowing NEMO5 to use the resources on Blue Waters efficiently requires enabling NEMO5 to use
GPUs on the Cray XK7 nodes. It is known that dense matrix multiplication and matrix inversion
get respectable FLOPs on GPU[8, 9]. Proper usage of GPUs can be made by scalable algorithms
which primarily use dense/sparse-dense matrix-matrix multiplication and matrix inversion. Thus,
the RGF algorithm discussed in section 2.1 was employed. NEMO5 is already heavily leveraging
large-scale community efforts such as PETSc, SLEPc, Python, and libMesh. These libraries allowed
a focus on code generality (more physics) and portability. Numerical solvers are isolated from the
physical models through object-oriented software development principles.

An initial approach to add GPU capability on a distributed heterogeneous system was to
implement interfaces to libraries such as MAGMA, CUSP, PARSEC and cuSPARSE. Since NEMO5
relied completely on the library PETSc for handling matrices, the plan was to add these interfaces in
PETSc and an interface to the MAGMA library in PETSc was built. The interface only handled
LU factorization of dense matrices. Work is ongoing to expand that interface to include more
MAGMA functions such as linear system solution, matrix multiplication etc.

To enable GPU support in PETSc, it needed to be compiled with CUDA and CUSP libraries.
To use GPU capabilities, special matrix formats have been developed by the PETSc development
team. Also, the usual complex datatype

std : : complex<double>

is replaced by

cusp : : complex<double>

in PETSc compiled with CUSP. This created problems because of datatype mismatch errors while
compiling NEMO5. Reinterpret cast was used as a workaround.

std : : complex<double> s t d v a l ;
cusp : : complex<double> cusp va l =

r e i n t e r p r e t c a s t <cusp : : complex<double> >(s t d v a l) ;

This approach solved the compilation errors. NEMO5 was compiled and linked with two instances
of PETSc (compiled with CUDA+CUSP), one each for real and complex values, a unique usage of
PETSc. While trying to initialize 2 such PETSc instances, a run time error was thrown because
of multiple initializations of the GPU from a single process. A solution for this error requires
development by the PETSc team and should be available in the forthcoming PETSc version 3.5.
This drawback meant that the initial approach of using PETSc to handle matrices on GPUs was
not going to work until PETSc 3.5. MAGMA was interfaced directly with NEMO5 to solve these
issues. Figure 1 describes this approach.

Figure 1: Interfacing external libraries with NEMO5 for GPU support.

3

3.2 MAGMA Interface

The RGF algorithm heavily relies on matrix-matrix multiplication and matrix inversion. Typically
on a single CPU running the RGF algorithm, 37% of the total time is taken by matrix inversion
and 26% is taken by matrix multiplication, so these algorithms were chosen as the first candidates
for GPU offload. Thus, the MAGMA [8] library was interfaced directly in NEMO5. MAGMA is a
library of next generation linear algebra GPU accelerated libraries for heterogeneous GPU-based
architectures, and it supports interfaces with current linear algebra packages and standards such
as LAPACK and BLAS. MAGMA allows applications to fully exploit heterogeneous CPU/GPU
systems. A multiplication scheme allowed for the storage of matrices on the GPU so that data
transfer to and from the GPU is minimized. Figure 2 describes how multiplications and inversions
are offloaded, computed and the results downloaded. The resulting speedup can be seen in Figure
3.

(a) result = M3 ∗M†2 ∗M1 ∗M2 ∗M3

(b) result = M1 ∗M2 ∗M3

(c) result = M−1

Figure 2: Matrix multiplications and inversion using MAGMA. Blue blocks are dense matrices in
RAM and red blocks are dense matrices in GPU memory.

A temporary task manager was developed, which would assign certain processes for offload to
1 GPU each. With this, and the already set up MPI parallelization scheme, the algorithm was
scaled to multiple nodes. Scaling results showed that the run time remained almost constant on
increasing problem size and number of cores. The GPUs were idle for about 70% of the total
run time and were not utilized efficiently. A stand alone library is currently under development
for running the RGF algorithm on GPUs. This library would handle asynchronous data transfer
as well as simultaneous computation over CPU and GPU. Overlapping these tasks would provide
more efficient resource utilization.

4

(a) Multiplication scaling (b) Inversion scaling

(c) Total simulation scaling

Figure 3: Scaling for matrix multiplications and inversion using MAGMA. The blue line shows
single CPU time, red line shows 1 CPU + 1 GPU time. 3a shows scaling of dense matrix multi-
plication vs problem size. 3b shows scaling of inversions of corresponding problem sizes. 3c shows
how the total start to end simulation time scales. Realistic problems have matrices of size about
3000 × 3000.

3.3 MAGMA interface in PETSc

An interface to the MAGMA library has been built in PETSc. The MAGMA library provides
some LAPACK functions on GPUs as discussed in the MAGMA section. The plan was to use this
interface in NEMO5 for offloading LU factorization, MatMatMult and Linear equation solving to
the Kepler GPU’s on BlueWaters XK nodes. After finishing the implementation and while it was
undergoing testing, it was determined with PETSc developers that both the double and complex
builds of PETSc attempt to initialize the GPU and there was no current work around. NEMO5 is
unique in that it links to two PETSc builds and so this was unknown before our attempt. NEMO5
could use the PETSc-MAGMA interface but for only double or complex PETSc builds. Therefore,
MAGMA was used directly from NEMO5. The PETSc-MAGMA will be part of the future PETSc
releases and will benefit other PETSc users. Additionally, PETSc developers may be able to fix
this issue of dual-builds to allow support for sparse matrices via the CUSP interface (see below).

Calling MAGMA functions directly from NEMO5 was actually tested early on the MAG-
MA/PETSc/NEMO5 development with an eigenvalue solver, but the PETSc interface solution
would have been easier, more elegant and more robust—NEMO5 should not particularly care
how the linear algebra problem is being solved—PETSc is primarily handling matrix manage-
ment and manipulations. Currently the routines for LU factorization and linear solve (which relies
on factorization) have been completed. Performance improvements are sizeable (shown below).
Implementation of other routines is straightforward. NEMO5 calculates sequential dense matrix
operations on GPU directly via MAGMA.

The Following MAGMA functions are implemented in NEMO5
Linear solves using LU factorization

5

Figure 4: Speedup using GPU for LU factorization. Block size in compression algorithm 2kx2k
for 12x12 nm sample. Developed an interface to the LU and Cholesky factorization in MAGMA
library in PETSc.

Figure 5: GPU speedup for the linear solve. MAGMA solve time includes time for offloading and
retrieving matrices. Range of wire cross-sections: 2x2 – 9x9 10x10 cross-section wire is too large
for GPU memory (16k x 16k matrix)

• magma zgetrf gpu

• magma zgetrs gpu

• magma dgetrf gpu

• magma dgetrs gpu

Sequential dense MatMat mult using GPUs

• magmablas zgemm • magmablas dgemm

Matrix inversion using LU/Cholesky factorization

• magma zgetri gpu • magma zpotri gpu

3.4 PETSc-CUSP Interface

MAGMA is designed for dense matrices. The existing PETSc code provides an interface to CUSP
which is a library of algorithms for sparse linear systems[10]. These algorithms for sparse matrices

6

GPU GPU

Node 1 Node 2

Ti
m

e

Processes Processes

Figure 6: Offloading processes take on more work. 18 energies on a Bluewaters XK node, 14 on
CPUs and 4 on CPU+GPU.

will primarily help with the self-energy calculations. However, a usable CUSP implementation will
not be available until PETSc 3.5, which is roughly scheduled for a quarter 2 2014 release. Linking
NEMO5 to PETSc built with CUSP currently produces runtime errors which we are investigating,
however, these errors occur even without using any CUSP functionality. MAGMA can theoreti-
cally act on sparse matrices, but with extreme performance degradation. In the meantime, some
of these CUSP functions may be called directly from NEMO5, after the NEMO5-MAGMA call
implementations have been finished.

4 Status

Asynchronous data transfer has been implemented in RGF algorithm. The following API is used
for computations in RGF.

Sparse-dense matrix multiplication

cusparseZcsrmm and cusparseZcsrmm2

Dense-dense matrix multiplication

cublasZgemm

Matrix inversion

magma zgetrf gpu and magma zgetri gpu

Miscellaneous algebra: custom CUDA kernels for sparse to dense conversion with dense shift,
cublasZaxpy, etc.

A formal task distribution system is currently under development, which will be able to dis-
cover and automatically assign resources to different tasks. After work on the task distribution
is complete, testing of load balancing and scalability of the RGF algorithm on BlueWaters can
continue.

5 Future Work

After a recent discussion with NVIDIA engineers, it was found that sparse-dense matrix multipli-
cation is not fast on GPUs for matrix sizes smaller than about 4500. The current problem size
involves matrices of size 3000x3000. A strategy needs to be developed for resource management
for larger problem sizes if a good performance is to be expected from the GPU. Work is ongoing
to build a more general framework for GPUs similar to the one current approach using PETSc
matrices. This involves developing wrapper classes for Sparse CSR, BSR and Dense matrices which
are GPU aware. Other work involves refining a task manager for balancing the heterogeneous load
and optimizing performance for improved scaling results for larger simulations.

7

6 Summary

The approach described here allowed NEMO5 to take advantage of a variety of CUDA-enabled
libraries. A custom code gives more flexibility in overlapping computation with data transfer to
and from GPU. These developments have cleared the way for NEMO5 to make use of the Blue
Waters machine and achieve a high level of performance and scalability. GPU capability in NEMO5
has been achieved through the use of the MAGMA, cuBLAS, and cuSPARSE libraries. A PETSc-
MAGMA interface has been developed in conjunction with PETSc developers and will be part of
the future PETSc releases to benefit other users. A more general framework for computation on
GPU can now be developed which uses CUDA capable libraries and custom CUDA kernels.

References

[1] International technology roadmap for semiconductors, 2012.

[2] Martin Fuechsle, Jill A. Miwa, Suddhasatta Mahapatra, Hoon Ryu, Sunhee Lee, Oliver
Warschkow, Lloyd C. L. Hollenberg, Gerhard Klimeck, and Michelle Y. Simmons. A single-
atom transistor. Nat Nano, 7(4):242–246, 2012. 10.1038/nnano.2012.21.

[3] Jim Fonseca, Tillmann C Kubis, Michael Povolotskyi, B. Novakovic, A. Ajoy, Ganesh Hegde,
Hesameddin Ilatikhameneh, Zhengping Jiang, Parijat Sengupta, Yaohua Tan, and Gerhard
Klimeck. Efficient and realistic device modeling from atomic detail to the nanoscale. Journal
of Computational Electronics, 12(4):1–9, 2013.

[4] Supriyo Datta. Electronic transport in mesoscopic systems. Cambridge studies in semiconduc-
tor physics and microelectronic engineering. Cambridge University Press, Cambridge ; New
York, 1995.

[5] Roger Lake, Gerhard Klimeck, R. Chris Bowen, and Dejan Jovanovic. Single and multiband
modeling of quantum electron transport through layered semiconductor devices. Journal of
Applied Physics, 81(12):7845, 1997.

[6] M P Lopez Sancho, J M Lopez Sancho, and J Rubio. Highly convergent schemes for the
calculation of bulk and surface Green functions. Journal of Physics F: Metal Physics, 15:851–
858, 1985.

[7] M P Lopez Sancho, J M Lopez Sancho, and J Rubio. Quick iterative scheme for the calculation
of transfer matrices: application to Mo (100). Journal of Physics F: Metal Physics, 14(5):1205–
1215, May 1984.

[8] R. Nath, S. Tomov, and J. Dongarra. An Improved Magma Gemm For Fermi Graphics Process-
ing Units. International Journal of High Performance Computing Applications, 24(4):511–515,
November 2010.

[9] P. Ezzatti, E. S. Quintana-Ort́ı, and a. Remón. Using graphics processors to accelerate the
computation of the matrix inverse. The Journal of Supercomputing, 58(3):429–437, April 2011.

[10] V. Minden, B.F. Smith, and M.G. Knepley. Preliminary implementation of petsc using gpus.
Proceedings of the 2010 International Workshop of GPU Solutions to Multiscale Problems in
Science and Engineering, 2010.

8

