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The	
  goal	
  of	
  this	
  proposal	
  is	
  to	
  explore	
  new	
  particle-­‐in-­‐cell	
  (PIC)	
  algorithms	
  that	
  will	
  
take	
  advantage	
  of	
  the	
  unique	
  hardware	
  configuration	
  on	
  Blue	
  Waters.	
  	
  The	
  three	
  
major	
  goals	
  are:	
  

	
  

(1) Explore	
  the	
  use	
  of	
  SSE/AVX	
  extensions	
  to	
  speed	
  up	
  single	
  node	
  performance	
  
of	
  the	
  OSIRIS	
  code.	
  

(2) Extend	
  the	
  development	
  of	
  our	
  MPI/GPU	
  PIC	
  framework	
  (UPIC).	
  

	
  

The	
  results	
  from	
  these	
  activities	
  are	
  summarized	
  below.	
  

(1) Optimize	
  OSIRIS	
  for	
  the	
  Intel	
  Processor	
  using	
  SSE/AVX	
  vectorization,	
  
and	
  demonstrate	
  good	
  parallel	
  scaling	
  on	
  the	
  full	
  Blue	
  Waters	
  
supercomputer	
  

The	
  CPU	
  part	
  of	
  this	
  project	
  involves	
  adding	
  SSE/AVX	
  vectorization	
  to	
  our	
  
production	
  code	
  OSIRIS.	
  	
  	
  There	
  are	
  two	
  main	
  stages	
  to	
  this	
  task.	
  	
  In	
  the	
  first	
  stage,	
  
we	
  ported	
  OSIRIS	
  to	
  the	
  Blue	
  Waters	
  and	
  demonstrates	
  good	
  strong	
  and	
  weak	
  
scaling,	
  and	
  in	
  the	
  second	
  stage,	
  we	
  implemented	
  SSE	
  instructions	
  in	
  the	
  known	
  
hotspots	
  of	
  the	
  code	
  and	
  demonstrates	
  good	
  performance	
  on	
  nearly	
  the	
  entire	
  Blue	
  
Waters	
  machine.	
  	
  	
  	
  	
  

We	
  performed	
  strong	
  scaling	
  studies	
  on	
  the	
  Blue	
  Waters	
  machine	
  in	
  both	
  2D	
  and	
  3D	
  
(OSIRIS	
  has	
  run-­‐time	
  polymorphism	
  which	
  allows	
  it	
  to	
  run	
  in	
  2D	
  more	
  efficiently).	
  	
  
In	
  our	
  2D	
  scaling	
  study,	
  there	
  are	
  16384	
  x	
  16384	
  grids	
  and	
  128	
  particles	
  per	
  grid	
  
(256	
  million	
  grids	
  and	
  32	
  billion	
  particles	
  total)	
  (which	
  is	
  the	
  typical	
  setup	
  for	
  our	
  
2D	
  simulations	
  for	
  long	
  pulse	
  laser	
  plasma	
  interaction	
  simulations).	
  	
  In	
  our	
  3D	
  
simulations,	
  there	
  are	
  1024x1024x1024	
  grids	
  and	
  32	
  particles	
  per	
  grid	
  (totaling	
  32	
  
billion	
  particles).	
  	
  The	
  3D	
  benchmark	
  mimics	
  a	
  typical	
  large	
  3D	
  LWFA	
  simulation.	
  	
  	
  
On	
  >	
  256,000	
  processors,	
  where	
  there	
  are	
  only	
  ~120,000	
  particles	
  per	
  core	
  (much	
  
less	
  than	
  that	
  in	
  a	
  typical	
  simulation),	
  OSIRIS	
  is	
  93%	
  efficient	
  without	
  SSE	
  



acceleration	
  (where	
  the	
  code	
  execution	
  time	
  is	
  longer	
  and	
  therefore	
  the	
  parallel	
  
overhead	
  is	
  less)	
  and	
  87.5%	
  efficient	
  with	
  SSE	
  optimizations	
  turned	
  on	
  in	
  2D,	
  and	
  
89%	
  efficient	
  without	
  SSE	
  and	
  78.8%	
  efficient	
  with	
  SSE	
  in	
  3D.	
  	
  These	
  results	
  are	
  
summarized	
  in	
  Figure	
  1.	
  

	
  
	
  

Figure	
  1:	
  	
  OSIRIS	
  strong	
  scaling	
  results	
  on	
  Blue	
  Waters	
  supercomputer.	
  	
  In	
  each	
  of	
  
these	
  simulations	
  there	
  are	
  32	
  billion	
  particles	
  total.	
  	
  	
  In	
  the	
  2D	
  simulations	
  there	
  
are	
  256	
  particles	
  per	
  cell	
  (which	
  is	
  typical	
  of	
  our	
  large	
  2D	
  LPI	
  simulations)	
  and	
  in	
  
the	
  3D	
  simulations	
  there	
  are	
  32	
  particles	
  per	
  cell	
  (which	
  is	
  typical	
  for	
  our	
  3D	
  LWFA	
  
simulations)	
  
	
  

The	
  most	
  time	
  consuming	
  parts	
  of	
  OSIRIS	
  (the	
  charge	
  deposition	
  and	
  the	
  orbits	
  
integration)	
  is	
  converted	
  to	
  include	
  SSE	
  and	
  AVX	
  vector	
  instructions.	
  	
  The	
  vector	
  
version	
  of	
  OSIRIS	
  achieves	
  a	
  speedup	
  of	
  1.9	
  to	
  3.8	
  using	
  SSE	
  vectorization	
  depending	
  
on	
  the	
  order	
  of	
  the	
  particle	
  shape	
  function	
  used	
  for	
  particle	
  interpolation.	
  	
  As	
  the	
  
order	
  increases	
  the	
  current	
  and	
  force	
  interpolation	
  calculations	
  become	
  more	
  
complicated	
  and	
  the	
  computational	
  intensity	
  increases,	
  thereby	
  increasing	
  the	
  
effectiveness	
  of	
  the	
  SSE	
  instructions.	
  	
  These	
  results	
  are	
  summarized	
  in	
  Figure	
  2.	
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Figure	
  2:	
  	
  Speedup	
  of	
  the	
  SSE	
  code	
  over	
  scalar	
  OSIRIS	
  for	
  various	
  shape	
  functions.	
  	
  
Ideally	
  the	
  SSE	
  should	
  be	
  4	
  times	
  faster	
  than	
  the	
  scalar	
  code.	
  	
  For	
  higher	
  order	
  
particle	
  shapes	
  where	
  the	
  computational	
  intensity	
  is	
  higher,	
  OSIRIS	
  with	
  SSE	
  
instructions	
  achieved	
  speedup	
  which	
  is	
  comparable	
  to	
  that	
  limit.	
  
	
  

The	
  vectorized	
  version	
  of	
  OSIRIS	
  was	
  benchmarked	
  on	
  the	
  entire	
  Blue	
  Waters	
  
supercomputer,	
  on	
  772,480	
  cores.	
  	
  The	
  simulation	
  uses	
  32	
  x	
  32	
  x	
  32	
  grids	
  per	
  core	
  
(25.3	
  billion	
  grids	
  total)	
  and	
  400	
  particles	
  per	
  cell	
  (10.12	
  trillion	
  particles	
  total)	
  and	
  
ran	
  for	
  437	
  steps.	
  	
  The	
  PAPI	
  output	
  from	
  this	
  simulation	
  is	
  included	
  in	
  table	
  2.	
  	
  	
  On	
  
the	
  Blue	
  Waters	
  supercomputer,	
  the	
  code	
  sustained	
  a	
  speed	
  of	
  2.2	
  PetaFLOPS	
  for	
  a	
  
period	
  of	
  >	
  40	
  minutes.	
  	
  	
  During	
  that	
  time,	
  OSIRIS	
  executed	
  nearly	
  4.8	
  1018	
  floating	
  
instructions	
  and	
  pushed	
  close	
  to	
  4.4	
  1015	
  particle-­‐steps.	
  

	
  

 
 Iterations =          437 
 
                                 Event         real cycles           real usec         user cycles           user usec             TOT_INS              TOT_FP              L2_DCM 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
                                  loop       4954593207843          2154170955       4954798000000          2154260000 4449812271244012886 4786273632293261082     204326910869145 
          dynamic load balance (total)                   0                   0                   0                   0                   0                   0                   0 
................   
                   update emf boundary        154917350426            67355613        154721000000            67270000   29765232664499274                   0        243341635909 
                       EMF diagnostics         76837641590            33407591         74313000000            32310000     110322817116961        569557228930          3975881539 
                          field solver           408381740              177567           805000000              350000     232002388284043     121928819470080         95130060633 
                          field smooth                   0                   0                   0                   0                   0                   0                   0 
                       psi calculation                   0                   0                   0                   0                   0                   0                   0 
          electric current diagnostics            69102262               30041           115000000               50000        162563793935                   0           372873121 
                        current smooth            67669394               29434           115000000               50000        402273823248                   0          1099013532 
               update current boundary        156530320230            68057009        156538000000            68060000   35132905334305375       3836846361600        446063370870 
                       advance deposit       4737931907733          2059971330       4738092000000          2060040000 4263093646158535748 4785236041863962481      96448370972603 
                        reduce current                   0                   0                   0                   0                   0                   0                   0 
 ........................ 
                 particle sort (total)        184297555705            80129399        184207000000            80090000   14290027249867813                   0      60385010318484 
               particle sort, gen. idx         60531859839            26318346         59846000000            26020000    4648944915971532                   0       1489627450363 
    particle sort, rearrange particles        171072965685            74379603        171074000000            74380000    9640978044909390                   0      58894151509372 

	
  
Figure	
  3:	
  	
  PAPI	
  output	
  from	
  our	
  2.2	
  PFlops	
  test.	
  	
  In	
  this	
  benchmark,	
  there	
  are	
  more	
  
floating	
  point	
  operations	
  than	
  instructions	
  due	
  to	
  the	
  use	
  of	
  SSE	
  vector	
  instructions	
  
in	
  the	
  optimized	
  version	
  of	
  OSIRIS.	
  	
  This	
  simulation	
  uses	
  more	
  than	
  10	
  trillion	
  
particles	
  and	
  uses	
  nearly	
  all	
  of	
  the	
  Blue	
  Water	
  CPU	
  cores.	
  
	
  

(2) Extend	
  the	
  development	
  of	
  our	
  MPI/GPU	
  PIC	
  Framework	
  

 
The GPU part of this project involves porting a compact skeleton 2-1/2D Electromagnetic 
Particle-in-Cell (PIC) code to a cluster of GPUs.  Our design plan has 3 stages.  The first 
stage was to implement a simpler 2D skeleton Electrostatic code on a single GPU.  The 
second stage was to implement a 2D Electrostatic code running on multiple GPUs using 
MPI to connect the GPUs.  The third and final stage was to add the additional features 
needed for the electromagnetic code.   All the codes divide space into tiles that are small 
enough to fit into the shared memory of the device and to process the particles in each tile 
independently [1].  Two different approaches were used on the single GPU codes: one 
algorithm uses one thread per tile and has no data collisions.  The other uses a thread 
block per tile and needs efficient mechanisms for resolving data collisions.  The collision-
free algorithm works best on the older GT200 architectures, whereas the collision-
resolving algorithm works best on the Fermi. 
 



In the third quarter (ending in April 15th), we completed the only remaining task from the 
first stage: the addition and replication of guard cells (ghost cells) for the field quantities. 
We implemented 2 different versions of the addition procedure, one each for the 
collision-free and collision-resolving data structures.  Only one version was needed for 
the replication of guard cells. 
 
We then implemented 2 versions of the 2-1/2D Electromagnetic code on a single GPU, 
with both the collision-free and collision-resolving algorithms.  Altogether 26 new Cuda 
C procedures were implemented. 
 
In the push procedures, two different approaches were used.  One created a list of 
particles which had to be moved to another tile as part of the push.  The other approach 
created the list as part of the reordering scheme.  Creating the list as part of the reordering 
requires reading a long array of particles just to determine which ones needed special 
processing, and this dominates the reordering time when the tile size is large.   Creating 
this list in the push avoids reading global memory again, since the push procedure has 
already read the particle array.  However, adding the list creation to the push also requires 
the use of more registers, a scarce resource, and thus reduces occupancy (the number of 
independent threads which can run concurrently).  As a result, sometimes one scheme is 
faster and sometimes the other.  In addition, there were 2 versions of the push, one with 
relativity included (which requires the calculation of divides and square roots) and one 
without which does not require these calculations.  The current deposit also updates the 
particles half a time step, so there are multiple versions of those as well. 
 
The 26 new procedures were distributed as follows: 
 
8 push procedures, 4 each for the collision-free and collision-resolving algorithms. 
8 current deposit procedures, 4 each for the collision-free and collision-resolving 
algorithms. 
5 guard cells procedures 
5 field solving procedures 
 
In addition, 5 procedures and the FFT from the electrostatic code were reused. 
 
 
The best results for the 2-1/2D Electromagnetic code on the M2090 show the following: 
 
Push Time:           0.43 nsec/particle/time step 
Deposit Time:        1.01 nsec/particle/time step 
Reordering Time:     0.76 nsec/particle/time step 
Total Particle Time: 2.20 nsec/particle/time step 
(48x total particle speedup compared with 2.67 GHz Intel i7) 
 
The best results on the M2090 were obtained with the collision-resolving scheme, where 
the list creation was carried out as part of the reordering, with a tile size of 16x16 and 
cuda blocksize of 128.  Relativity was turned on for this benchmark, but there was very 
little difference (2%) compared to relativity turned off:  it appears the cost of the square 



roots and divides on the GPU was very small.  (On the host machine, relativity typically 
costs about 30%.)  The collision-free scheme with a tile size of 2x2 was about 10% 
slower than the collision-resolving scheme.  About 10% additional time was spend on 
solving the electromagnetic fields, which included 10 FFTs/time step.  On the older T10 
architecture, the collision-free scheme was best, with a tile size of 1x2, and was about 
2.4x faster than the collision-resolving scheme.  All the results are for single-precision. 
 
We did not work on multiple GPUs this period.  Stage 1 is now complete.  The only 
remaining task for stage 2 is to implement the addition and replication of guard cells 
(ghost cells) for the field quantities.  The single GPU version of the electromagnetic code 
for stage 3 is now complete, and the multiple-GPU version remains to be started. 
 
 
In the most recent period (from April 15 onward), we completed the only remaining task 
from the second stage: the addition and replication of guard cells (ghost cells) for the 
field quantities, distributed across multiple GPUs.  This required the implementation of 4 
guard cell procedures on the GPU, two for adding charge density, and 2 for copying the 
electric fields, and two procedures written in MPI to move edge data from one GPU to 
another.  
 
The best results for the 2D Electrostatic code on the M2090 show the following: 
 
Benchmark size: 2048x2048 grids, 150,994,944 particles 
 
Electrostatic Code, mx=16,my=16, with dt = 0.1 
             CPU:Intel i7    1  GPU       2 GPUs       3 GPUs 
Push            22.1 ns.    0.326 ns.    0.164 ns.    0.109 ns. 
Deposit          8.5 ns.    0.233 ns.    0.118 ns.    0.079 ns. 
Reorder          0.4 ns.    0.442 ns.    0.222 ns.    0.148 ns. 
Total Particle  31.0 ns.    1.003 ns.    0.505 ns.    0.338 ns. 
Total particle speedup on 3 GPUs was about 92 compared to 1 CPU. 
The field solver took 5%, 19%, and 27% of the total time, as the number of GPUs 
increased from 1 to 3. 
 
Stages 1 and 2 are now complete.  The single GPU version of the electromagnetic code 
for stage 3 is now complete, but the multiple-GPU version remains to be started. 
 
In addition, a paper based in part on this project, was submitted for publication,  It is 
entitled, “Particle-in-Cell Algorithms for Emerging Computer Architectures,” by Viktor 
K. Decyk and Tajendra V. Singh.  A preprint is available at the following web site: 
https://idre.ucla.edu/hpc/research. 
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