
Final	
 Report	
 for	
 Phase	
 1	
 Enhanced	
 Intellectual	
 Services	
 –	
 Direct	

PRAC	
 Support	
 -­‐-­‐	
 	
 Petascale	
 plasma	
 physics	
 simulations	
 using	
 PIC	

codes	

	

	

Team	
 Lead:	
 	
 Warren	
 B.	
 Mori	

Other	

Personnel:	

Dr.	
 V.	
 K.	
 Decyk,	
 Dr.	
 F.	
 S.	
 Tsung	

Affiliation:	
 University	
 of	
 California,	
 Los	
 Angeles	

The	
 goal	
 of	
 this	
 proposal	
 is	
 to	
 explore	
 new	
 particle-­‐in-­‐cell	
 (PIC)	
 algorithms	
 that	
 will	

take	
 advantage	
 of	
 the	
 unique	
 hardware	
 configuration	
 on	
 Blue	
 Waters.	
 	
 The	
 three	

major	
 goals	
 are:	

	

(1) Explore	
 the	
 use	
 of	
 SSE/AVX	
 extensions	
 to	
 speed	
 up	
 single	
 node	
 performance	

of	
 the	
 OSIRIS	
 code.	

(2) Extend	
 the	
 development	
 of	
 our	
 MPI/GPU	
 PIC	
 framework	
 (UPIC).	

	

The	
 results	
 from	
 these	
 activities	
 are	
 summarized	
 below.	

(1) Optimize	
 OSIRIS	
 for	
 the	
 Intel	
 Processor	
 using	
 SSE/AVX	
 vectorization,	

and	
 demonstrate	
 good	
 parallel	
 scaling	
 on	
 the	
 full	
 Blue	
 Waters	

supercomputer	

The	
 CPU	
 part	
 of	
 this	
 project	
 involves	
 adding	
 SSE/AVX	
 vectorization	
 to	
 our	

production	
 code	
 OSIRIS.	
 	
 	
 There	
 are	
 two	
 main	
 stages	
 to	
 this	
 task.	
 	
 In	
 the	
 first	
 stage,	

we	
 ported	
 OSIRIS	
 to	
 the	
 Blue	
 Waters	
 and	
 demonstrates	
 good	
 strong	
 and	
 weak	

scaling,	
 and	
 in	
 the	
 second	
 stage,	
 we	
 implemented	
 SSE	
 instructions	
 in	
 the	
 known	

hotspots	
 of	
 the	
 code	
 and	
 demonstrates	
 good	
 performance	
 on	
 nearly	
 the	
 entire	
 Blue	

Waters	
 machine.	
 	
 	
 	
 	

We	
 performed	
 strong	
 scaling	
 studies	
 on	
 the	
 Blue	
 Waters	
 machine	
 in	
 both	
 2D	
 and	
 3D	

(OSIRIS	
 has	
 run-­‐time	
 polymorphism	
 which	
 allows	
 it	
 to	
 run	
 in	
 2D	
 more	
 efficiently).	
 	

In	
 our	
 2D	
 scaling	
 study,	
 there	
 are	
 16384	
 x	
 16384	
 grids	
 and	
 128	
 particles	
 per	
 grid	

(256	
 million	
 grids	
 and	
 32	
 billion	
 particles	
 total)	
 (which	
 is	
 the	
 typical	
 setup	
 for	
 our	

2D	
 simulations	
 for	
 long	
 pulse	
 laser	
 plasma	
 interaction	
 simulations).	
 	
 In	
 our	
 3D	

simulations,	
 there	
 are	
 1024x1024x1024	
 grids	
 and	
 32	
 particles	
 per	
 grid	
 (totaling	
 32	

billion	
 particles).	
 	
 The	
 3D	
 benchmark	
 mimics	
 a	
 typical	
 large	
 3D	
 LWFA	
 simulation.	
 	
 	

On	
 >	
 256,000	
 processors,	
 where	
 there	
 are	
 only	
 ~120,000	
 particles	
 per	
 core	
 (much	

less	
 than	
 that	
 in	
 a	
 typical	
 simulation),	
 OSIRIS	
 is	
 93%	
 efficient	
 without	
 SSE	

acceleration	
 (where	
 the	
 code	
 execution	
 time	
 is	
 longer	
 and	
 therefore	
 the	
 parallel	

overhead	
 is	
 less)	
 and	
 87.5%	
 efficient	
 with	
 SSE	
 optimizations	
 turned	
 on	
 in	
 2D,	
 and	

89%	
 efficient	
 without	
 SSE	
 and	
 78.8%	
 efficient	
 with	
 SSE	
 in	
 3D.	
 	
 These	
 results	
 are	

summarized	
 in	
 Figure	
 1.	

	

	

Figure	
 1:	
 	
 OSIRIS	
 strong	
 scaling	
 results	
 on	
 Blue	
 Waters	
 supercomputer.	
 	
 In	
 each	
 of	

these	
 simulations	
 there	
 are	
 32	
 billion	
 particles	
 total.	
 	
 	
 In	
 the	
 2D	
 simulations	
 there	

are	
 256	
 particles	
 per	
 cell	
 (which	
 is	
 typical	
 of	
 our	
 large	
 2D	
 LPI	
 simulations)	
 and	
 in	

the	
 3D	
 simulations	
 there	
 are	
 32	
 particles	
 per	
 cell	
 (which	
 is	
 typical	
 for	
 our	
 3D	
 LWFA	

simulations)	

	

The	
 most	
 time	
 consuming	
 parts	
 of	
 OSIRIS	
 (the	
 charge	
 deposition	
 and	
 the	
 orbits	

integration)	
 is	
 converted	
 to	
 include	
 SSE	
 and	
 AVX	
 vector	
 instructions.	
 	
 The	
 vector	

version	
 of	
 OSIRIS	
 achieves	
 a	
 speedup	
 of	
 1.9	
 to	
 3.8	
 using	
 SSE	
 vectorization	
 depending	

on	
 the	
 order	
 of	
 the	
 particle	
 shape	
 function	
 used	
 for	
 particle	
 interpolation.	
 	
 As	
 the	

order	
 increases	
 the	
 current	
 and	
 force	
 interpolation	
 calculations	
 become	
 more	

complicated	
 and	
 the	
 computational	
 intensity	
 increases,	
 thereby	
 increasing	
 the	

effectiveness	
 of	
 the	
 SSE	
 instructions.	
 	
 These	
 results	
 are	
 summarized	
 in	
 Figure	
 2.	
 	
 	

	

1

2

3

4

0 1 2 3 4

2.2

3.0

1.9

2.1

3.1

3.8

1.9

1.9

SSE single / F90 double

Speedup

In
te

rp
o

la
ti
o

n
 L

e
ve

l

Figure	
 2:	
 	
 Speedup	
 of	
 the	
 SSE	
 code	
 over	
 scalar	
 OSIRIS	
 for	
 various	
 shape	
 functions.	
 	

Ideally	
 the	
 SSE	
 should	
 be	
 4	
 times	
 faster	
 than	
 the	
 scalar	
 code.	
 	
 For	
 higher	
 order	

particle	
 shapes	
 where	
 the	
 computational	
 intensity	
 is	
 higher,	
 OSIRIS	
 with	
 SSE	

instructions	
 achieved	
 speedup	
 which	
 is	
 comparable	
 to	
 that	
 limit.	

	

The	
 vectorized	
 version	
 of	
 OSIRIS	
 was	
 benchmarked	
 on	
 the	
 entire	
 Blue	
 Waters	

supercomputer,	
 on	
 772,480	
 cores.	
 	
 The	
 simulation	
 uses	
 32	
 x	
 32	
 x	
 32	
 grids	
 per	
 core	

(25.3	
 billion	
 grids	
 total)	
 and	
 400	
 particles	
 per	
 cell	
 (10.12	
 trillion	
 particles	
 total)	
 and	

ran	
 for	
 437	
 steps.	
 	
 The	
 PAPI	
 output	
 from	
 this	
 simulation	
 is	
 included	
 in	
 table	
 2.	
 	
 	
 On	

the	
 Blue	
 Waters	
 supercomputer,	
 the	
 code	
 sustained	
 a	
 speed	
 of	
 2.2	
 PetaFLOPS	
 for	
 a	

period	
 of	
 >	
 40	
 minutes.	
 	
 	
 During	
 that	
 time,	
 OSIRIS	
 executed	
 nearly	
 4.8	
 1018	
 floating	

instructions	
 and	
 pushed	
 close	
 to	
 4.4	
 1015	
 particle-­‐steps.	

	

 Iterations = 437

 Event real cycles real usec user cycles user usec TOT_INS TOT_FP L2_DCM
--
 loop 4954593207843 2154170955 4954798000000 2154260000 4449812271244012886 4786273632293261082 204326910869145
 dynamic load balance (total) 0 0 0 0 0 0 0
................
 update emf boundary 154917350426 67355613 154721000000 67270000 29765232664499274 0 243341635909
 EMF diagnostics 76837641590 33407591 74313000000 32310000 110322817116961 569557228930 3975881539
 field solver 408381740 177567 805000000 350000 232002388284043 121928819470080 95130060633
 field smooth 0 0 0 0 0 0 0
 psi calculation 0 0 0 0 0 0 0
 electric current diagnostics 69102262 30041 115000000 50000 162563793935 0 372873121
 current smooth 67669394 29434 115000000 50000 402273823248 0 1099013532
 update current boundary 156530320230 68057009 156538000000 68060000 35132905334305375 3836846361600 446063370870
 advance deposit 4737931907733 2059971330 4738092000000 2060040000 4263093646158535748 4785236041863962481 96448370972603
 reduce current 0 0 0 0 0 0 0

 particle sort (total) 184297555705 80129399 184207000000 80090000 14290027249867813 0 60385010318484
 particle sort, gen. idx 60531859839 26318346 59846000000 26020000 4648944915971532 0 1489627450363
 particle sort, rearrange particles 171072965685 74379603 171074000000 74380000 9640978044909390 0 58894151509372

	

Figure	
 3:	
 	
 PAPI	
 output	
 from	
 our	
 2.2	
 PFlops	
 test.	
 	
 In	
 this	
 benchmark,	
 there	
 are	
 more	

floating	
 point	
 operations	
 than	
 instructions	
 due	
 to	
 the	
 use	
 of	
 SSE	
 vector	
 instructions	

in	
 the	
 optimized	
 version	
 of	
 OSIRIS.	
 	
 This	
 simulation	
 uses	
 more	
 than	
 10	
 trillion	

particles	
 and	
 uses	
 nearly	
 all	
 of	
 the	
 Blue	
 Water	
 CPU	
 cores.	

	

(2) Extend	
 the	
 development	
 of	
 our	
 MPI/GPU	
 PIC	
 Framework	

The GPU part of this project involves porting a compact skeleton 2-1/2D Electromagnetic
Particle-in-Cell (PIC) code to a cluster of GPUs. Our design plan has 3 stages. The first
stage was to implement a simpler 2D skeleton Electrostatic code on a single GPU. The
second stage was to implement a 2D Electrostatic code running on multiple GPUs using
MPI to connect the GPUs. The third and final stage was to add the additional features
needed for the electromagnetic code. All the codes divide space into tiles that are small
enough to fit into the shared memory of the device and to process the particles in each tile
independently [1]. Two different approaches were used on the single GPU codes: one
algorithm uses one thread per tile and has no data collisions. The other uses a thread
block per tile and needs efficient mechanisms for resolving data collisions. The collision-
free algorithm works best on the older GT200 architectures, whereas the collision-
resolving algorithm works best on the Fermi.

In the third quarter (ending in April 15th), we completed the only remaining task from the
first stage: the addition and replication of guard cells (ghost cells) for the field quantities.
We implemented 2 different versions of the addition procedure, one each for the
collision-free and collision-resolving data structures. Only one version was needed for
the replication of guard cells.

We then implemented 2 versions of the 2-1/2D Electromagnetic code on a single GPU,
with both the collision-free and collision-resolving algorithms. Altogether 26 new Cuda
C procedures were implemented.

In the push procedures, two different approaches were used. One created a list of
particles which had to be moved to another tile as part of the push. The other approach
created the list as part of the reordering scheme. Creating the list as part of the reordering
requires reading a long array of particles just to determine which ones needed special
processing, and this dominates the reordering time when the tile size is large. Creating
this list in the push avoids reading global memory again, since the push procedure has
already read the particle array. However, adding the list creation to the push also requires
the use of more registers, a scarce resource, and thus reduces occupancy (the number of
independent threads which can run concurrently). As a result, sometimes one scheme is
faster and sometimes the other. In addition, there were 2 versions of the push, one with
relativity included (which requires the calculation of divides and square roots) and one
without which does not require these calculations. The current deposit also updates the
particles half a time step, so there are multiple versions of those as well.

The 26 new procedures were distributed as follows:

8 push procedures, 4 each for the collision-free and collision-resolving algorithms.
8 current deposit procedures, 4 each for the collision-free and collision-resolving
algorithms.
5 guard cells procedures
5 field solving procedures

In addition, 5 procedures and the FFT from the electrostatic code were reused.

The best results for the 2-1/2D Electromagnetic code on the M2090 show the following:

Push Time: 0.43 nsec/particle/time step
Deposit Time: 1.01 nsec/particle/time step
Reordering Time: 0.76 nsec/particle/time step
Total Particle Time: 2.20 nsec/particle/time step
(48x total particle speedup compared with 2.67 GHz Intel i7)

The best results on the M2090 were obtained with the collision-resolving scheme, where
the list creation was carried out as part of the reordering, with a tile size of 16x16 and
cuda blocksize of 128. Relativity was turned on for this benchmark, but there was very
little difference (2%) compared to relativity turned off: it appears the cost of the square

roots and divides on the GPU was very small. (On the host machine, relativity typically
costs about 30%.) The collision-free scheme with a tile size of 2x2 was about 10%
slower than the collision-resolving scheme. About 10% additional time was spend on
solving the electromagnetic fields, which included 10 FFTs/time step. On the older T10
architecture, the collision-free scheme was best, with a tile size of 1x2, and was about
2.4x faster than the collision-resolving scheme. All the results are for single-precision.

We did not work on multiple GPUs this period. Stage 1 is now complete. The only
remaining task for stage 2 is to implement the addition and replication of guard cells
(ghost cells) for the field quantities. The single GPU version of the electromagnetic code
for stage 3 is now complete, and the multiple-GPU version remains to be started.

In the most recent period (from April 15 onward), we completed the only remaining task
from the second stage: the addition and replication of guard cells (ghost cells) for the
field quantities, distributed across multiple GPUs. This required the implementation of 4
guard cell procedures on the GPU, two for adding charge density, and 2 for copying the
electric fields, and two procedures written in MPI to move edge data from one GPU to
another.

The best results for the 2D Electrostatic code on the M2090 show the following:

Benchmark size: 2048x2048 grids, 150,994,944 particles

Electrostatic Code, mx=16,my=16, with dt = 0.1
 CPU:Intel i7 1 GPU 2 GPUs 3 GPUs
Push 22.1 ns. 0.326 ns. 0.164 ns. 0.109 ns.
Deposit 8.5 ns. 0.233 ns. 0.118 ns. 0.079 ns.
Reorder 0.4 ns. 0.442 ns. 0.222 ns. 0.148 ns.
Total Particle 31.0 ns. 1.003 ns. 0.505 ns. 0.338 ns.
Total particle speedup on 3 GPUs was about 92 compared to 1 CPU.
The field solver took 5%, 19%, and 27% of the total time, as the number of GPUs
increased from 1 to 3.

Stages 1 and 2 are now complete. The single GPU version of the electromagnetic code
for stage 3 is now complete, but the multiple-GPU version remains to be started.

In addition, a paper based in part on this project, was submitted for publication, It is
entitled, “Particle-in-Cell Algorithms for Emerging Computer Architectures,” by Viktor
K. Decyk and Tajendra V. Singh. A preprint is available at the following web site:
https://idre.ucla.edu/hpc/research.

References:

[1] Viktor K. Decyk and Tajendra V. Singh ,"Adaptable Particle-in-Cell algorithms for
graphical processsing units," Computer Physics Communications 182, 641 (2011)	

