
PE Workshop October 12-13, 2011

  Cray performance tools overview

  Steps to using the tools
  Performance measurement on the Cray XE system
  Using HW performance counters
  Profiling applications

  Visualization of performance data through pat_report
  Visualization of performance data through Cray Apprentice2

  Building, launching and running on raven

October 12-13 2011 Cray Inc. 2

  Assist the user with application performance analysis and
optimization
•  Help user identify important and meaningful information from

potentially massive data sets
•  Help user identify problem areas instead of just reporting data
•  Bring optimization knowledge to a wider set of users

  Focus on ease of use and intuitive user interfaces
•  Automatic program instrumentation
•  Automatic analysis

  Target scalability issues in all areas of tool development
•  Data management

  Storage, movement, presentation

October 12-13 2011 4 Cray Inc.

Provide a complete solution from instrumentation to
measurement to analysis to visualization of data

  Performance measurement and analysis on large systems
•  Automatic Profiling Analysis
•  Load Imbalance
•  HW counter derived metrics
•  Predefined trace groups provide performance statistics for libraries

called by program (blas, lapack, pgas runtime, netcdf, hdf5, etc.)
•  Observations of inefficient performance
•  Data collection and presentation filtering
•  Data correlates to user source (line number info, etc.)
•  Support MPI, SHMEM, OpenMP, UPC, CAF
•  Access to network counters
•  Minimal program perturbation

October 12-13 2011 Cray Inc. 5

  Usability on large systems
•  Client / server
•  Scalable data format
•  Intuitive visualization of performance data

  Supports “recipe” for porting MPI programs to many-core or
hybrid systems

  Integrates with other Cray PE software for more tightly
coupled development environment

October 12-13 2011 Cray Inc. 6

  Supports traditional post-mortem performance analysis
•  Automatic identification of performance problems

  Indication of causes of problems
  Suggestions of modifications for performance improvement

•  pat_build: provides automatic instrumentation
•  CrayPat run-time library collects measurements (transparent to the

user)
•  pat_report performs analysis and generates text reports
•  pat_help: online help utility
•  Cray Apprentice2: graphical visualization tool

October 12-13 2011 7 Cray Inc.

  Separately licensed product from Cray
•  Uses FLEXlm licensing (checked during program instrumentation)

  Accessed on your system via software modulefiles
•  % module load perftools!

  Current release: pertools/5.2.3

  Default and past versions available on a system (up to site)
!

•  % module avail perf!

---------------------------- /opt/cray/modulefiles -----------------------------!

perftools/5.1.2 perftools/5.2.2 perftools/5.3.0.8241!

perftools/5.1.3 perftools/5.2.3(default) perftools/5.3.0.8250!

October 12-13 2011 Cray Inc. 8

  Reduced pat_report processing and report generation times

  Reduced app2 data load times

  Graphical presentation handled locally (not passed through ssh
connection)

  Better tool responsiveness

  Minimizes data loaded into memory at any given time

  Reduced server footprint on Cray XT/XE service node

  Larger data files handled (1.5TB .xf -> 800GB .ap2)

October 12-13 2011 Cray Inc. 9

  CPMD
•  MPI, instrumented with pat_build –u, HWPC=1
•  960 cores

  VASP
•  MPI, instrumented with pat_build –gmpi –u, HWPC=3
•  768 cores

October 12-13 2011 Cray Inc.

Per$ools	
 5.1.3	
 Per$ools	
 5.2.0	

.xf	
 -­‐>	
 .ap2	
 	
 	
 	
 	
 	
 88.5	
 seconds	
 22.9	
 seconds	

ap2	
 -­‐>	
 report	
 1512.27	
 seconds	
 49.6	
 seconds	

Per$ools	
 5.1.3	
 Per$ools	
 5.2.0	

.xf	
 -­‐>	
 .ap2	
 45.2	
 seconds	
 15.9	
 seconds	

ap2	
 -­‐>	
 report	
 796.9	
 seconds	
 28.0	
 seconds	

10

  Log into Cray XT/XE login node
% ssh –Y kaibab

  Launch Cray Apprentice2 on Cray XT/XE login node
% app2 /lus/scratch/mydir/my_program.ap2
•  User interface displayed on desktop via ssh X11 forwarding
•  Entire .ap2 file loaded into memory on login node (can be Gbytes of

data)

Cray Inc. October 12-13 2011

Linux desktop Cray XT/XE login Compute nodes All data from
my_program.ap2 +
X11 protocol app2

my_program.ap2

X Window
System
application my_program+apa

Collected
performance
data

11

  Launch Cray Apprentice2 on desktop, point to data
% app2 kaibab:/lus/scratch/mydir/my_program.ap2

•  User interface displayed on desktop via X Windows-based software
•  Minimal subset of data from.ap2 file loaded into memory on login node

at any given time
•  Only data requested sent from server to client

Cray Inc. October 12-13 2011

Linux desktop Cray XT/XE login Compute nodes User requested data
from
my_program.ap2 app2 server

my_program.ap2

X Window
System
application

app2 client

my_program+apa

Collected
performance
data

12

 Millions of lines of code
•  Automatic profiling analysis

  Identifies top time consuming routines
  Automatically creates instrumentation template customized to your

application

  Lots of processes/threads
•  Load imbalance analysis

  Identifies computational code regions and synchronization calls that could
benefit most from load balance optimization

  Estimates savings if corresponding section of code were balanced

  Long running applications
•  Detection of outliers

October 12-13 2011 13 Cray Inc.

 When performance measurement is triggered
•  External agent (asynchronous)

  Sampling
o  Timer interrupt
o  Hardware counters overflow

•  Internal agent (synchronous)
  Code instrumentation

o  Event based
o  Automatic or manual instrumentation

  How performance data is recorded
•  Profile ::= Summation of events over time

  run time summarization (functions, call sites, loops, …)
•  Trace file ::= Sequence of events over time

October 12-13 2011 15 Cray Inc.

  pat_build is a stand-alone utility that automatically
instruments the application for performance collection

  Requires no source code or makefile modification
•  Automatic instrumentation at group (function) level

  Groups: mpi, io, heap, math SW, …

  Performs link-time instrumentation
•  Requires object files
•  Instruments optimized code
•  Generates stand-alone instrumented program
•  Preserves original binary

October 12-13 2011 16 Cray Inc.

  Supports two categories of experiments
•  asynchronous experiments (sampling) which capture values from the

call stack or the program counter at specified intervals or when a
specified counter overflows

•  Event-based experiments (tracing) which count some events such as
the number of times a specific system call is executed

 While tracing provides most useful information, it can be very
heavy if the application runs on a large number of cores for a
long period of time

  Sampling can be useful as a starting point, to provide a first
overview of the work distribution

October 12-13 2011 Cray Inc. 17

  Large programs
•  Scaling issues more dominant
•  Use automatic profiling analysis to quickly identify top time consuming

routines
•  Use loop statistics to quickly identify top time consuming loops

  Small (test) or short running programs
•  Scaling issues not significant
•  Can skip first sampling experiment and directly generate profile
•  For example: % pat_build –u –g mpi my_program!

October 12-13 2011 Cray Inc. 18

October 12-13 2011 Cray Inc. Slide 19

  Sampling is useful to determine where the program spends most of its
time (functions and lines)

  The environment variable PAT_RT_EXPERIMENT allows the
specification of the type of experiment prior to execution
•  samp_pc_time (default)

  Samples the PC at intervals of 10,000 microseconds
  Measures user CPU and system CPU time
  Returns total program time and absolute and relative times each program

counter was recorded
  Optionally record the values of hardware counters specified with

PAT_RT_HWPC

•  samp_pc_ovfl
  Samples the PC at a given overflow of a HW counter
  Does not allow collection of hardware counters

•  samp_cs_time
  Sample the call stack at a given time interval

  Automatic profiling analysis (APA)

•  Provides simple procedure to instrument and collect performance data
for novice users

•  Identifies top time consuming routines

•  Automatically creates instrumentation template customized to
application for future in-depth measurement and analysis

October 12-13 2011 Cray Inc. 20

  Access performance tools software

 % module load perftools

  Build application keeping .o files (CCE: -h keepfiles)

 % make clean
 % make

  Instrument application for automatic profiling analysis
•  You should get an instrumented program a.out+pat

 % pat_build –O apa a.out

  Run application to get top time consuming routines
•  You should get a performance file (“<sdatafile>.xf”) or

multiple files in a directory <sdatadir>

 % aprun … a.out+pat (or qsub <pat script>)

October 12-13 2011 Cray Inc. 21

October 12-13 2011 Cray Inc. Slide 22

  Generate report and .apa instrumentation file

% pat_report –o my_sampling_report [<sdatafile>.xf |
<sdatadir>]

  Inspect .apa file and sampling report

  Verify if additional instrumentation is needed

October 12-13 2011 Cray Inc. Slide 23

APA File Example
You can edit this file, if desired, and use it
to reinstrument the program for tracing like this:

pat_build -O standard.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2-Oapa.

512.quad.cores.seal.090405.1154.mpi.pat_rt_exp=default.pat_rt_hwpc=none.
14999.xf.xf.apa

These suggested trace options are based on data from:

/home/users/malice/pat/Runs/Runs.seal.pat5001.2009Apr04/./pat.quad/homme/

standard.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2-Oapa.
512.quad.cores.seal.090405.1154.mpi.pat_rt_exp=default.pat_rt_hwpc=none.
14999.xf.xf.cdb

--

HWPC group to collect by default.

 -Drtenv=PAT_RT_HWPC=1 # Summary with TLB metrics.

--

Libraries to trace.

 -g mpi

--

User-defined functions to trace, sorted by % of samples.

The way these functions are filtered can be controlled with
pat_report options (values used for this file are shown):

-s apa_max_count=200 No more than 200 functions are listed.
-s apa_min_size=800 Commented out if text size < 800 bytes.
-s apa_min_pct=1 Commented out if it had < 1% of samples.
-s apa_max_cum_pct=90 Commented out after cumulative 90%.

Local functions are listed for completeness, but cannot be traced.

 -w # Enable tracing of user-defined functions.
 # Note: -u should NOT be specified as an additional option.

31.29% 38517 bytes
 -T prim_advance_mod_preq_advance_exp_

15.07% 14158 bytes
 -T prim_si_mod_prim_diffusion_

9.76% 5474 bytes
 -T derivative_mod_gradient_str_nonstag_

. . .

2.95% 3067 bytes
 -T forcing_mod_apply_forcing_

2.93% 118585 bytes
 -T column_model_mod_applycolumnmodel_

Functions below this point account for less than 10% of samples.

0.66% 4575 bytes
-T bndry_mod_bndry_exchangev_thsave_time_

0.10% 46797 bytes
-T baroclinic_inst_mod_binst_init_state_

0.04% 62214 bytes
-T prim_state_mod_prim_printstate_

. . .
0.00% 118 bytes
-T time_mod_timelevel_update_

--

 -o preqx.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2.x+apa

New instrumented program.

 /.AUTO/cray/css.pe_tools/malice/craypat/build/pat/2009Apr03/2.1.56HD/amd64/homme/

pgi/pat-5.0.0.2/homme/2005Dec08/build.Linux/preqx.cray-
xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2.x # Original program.

  Instrument application for further analysis (a.out+apa)

% pat_build –O <apafile>.apa

  Run application

% aprun … a.out+apa (or qsub <apa script>)

  Generate text report and visualization file (.ap2)

% pat_report –o my_text_report.txt [<datafile>.xf |
<datadir>]

  View report in text and/or with Cray Apprentice2

% app2 <datafile>.ap2

October 12-13 2011 Cray Inc. 24

Where to Run Instrumented Application

  MUST run on Lustre (/work/… , /lus/…, /scratch/…, etc.)

  Number of files used to store raw data

  1 file created for program with 1 – 256 processes

  √n files created for program with 257 – n processes

  Ability to customize with PAT_RT_EXPFILE_MAX

October 12-13 2011 25 Cray Inc.

Files Generated and the Naming Convention

October 12-13 2011 Cray Inc. Slide 26

File Suffix Description

a.out+pat Program instrumented for data collection

a.out…s.xf

Raw data for sampling experiment, available after
application execution

a.out…t.xf Raw data for trace (summarized or full) experiment,
available after application execution

a.out…st.ap2 Processed data, generated by pat_report, contains
application symbol information

a.out…s.apa Automatic profiling pnalysis template, generated by
pat_report (based on pat_build –O apa experiment)

a.out+apa Program instrumented using .apa file

MPICH_RANK_ORDER.Custom Rank reorder file generated by pat_report from
automatic grid detection an reorder suggestions

October 12-13 2011 Cray Inc. Slide 27

Why Should I generate an “.ap2” file?

  The “.ap2” file is a self contained compressed performance
file
  Normally it is about 5 times smaller than the “.xf” file

  Contains the information needed from the application binary
  Can be reused, even if the application binary is no longer

available or if it was rebuilt

  It is the only input format accepted by Cray Apprentice2

  Runtime controlled through PAT_RT_XXX environment
variables

  See intro_craypat(1) man page

  Examples of control
•  Enable full trace
•  Change number of data files created
•  Enable collection of HW counters
•  Enable collection of network counters
•  Enable tracing filters to control trace file size (max threads, max call

stack depth, etc.)

October 12-13 2011 Cray Inc. 28

January 16-17, 2008 Luiz DeRose (ldr@cray.com) © Cray Inc.
 Slide 29

  Optional timeline view of program available
•  export PAT_RT_SUMMARY=0
•  View trace file with Cray Apprentice2

  Number of files used to store raw data:
•  1 file created for program with 1 – 256 processes
•  √n files created for program with 257 – n processes
•  Ability to customize with PAT_RT_EXPFILE_MAX

  Request hardware performance counter information:
•  export PAT_RT_HWPC=<HWPC Group>
•  Can specify events or predefined groups

View Data with pat_report

pat_report

  Performs data conversion
  Combines information from binary with raw performance data

  Performs analysis on data

  Generates text report of performance results

  Formats data for input into Cray Apprentice2

October 12-13 2011 31 Cray Inc.

Job Execution Information

October 12-13 2011 Cray Inc. Slide 32

CrayPat/X: Version 5.2.3.8078 Revision 8078 (xf 8063) 08/25/11 …

Number of PEs (MPI ranks): 16

Numbers of PEs per Node: 16

Numbers of Threads per PE: 1

Number of Cores per Socket: 12

Execution start time: Thu Aug 25 14:16:51 2011

System type and speed: x86_64 2000 MHz

Current path to data file:
 /lus/scratch/heidi/ted_swim/mpi-openmp/run/swim+pat+27472-34t.ap2

Notes for table 1:
…

Sampling Output (Table 1)

Notes for table 1:

...

Table 1: Profile by Function

 Samp % | Samp | Imb. | Imb. |Group
 | | Samp | Samp % | Function
 | | | | PE='HIDE'

 100.0% | 775 | -- | -- |Total
|---
| 94.2% | 730 | -- | -- |USER
||--
|| 43.4% | 336 | 8.75 | 2.6% |mlwxyz_
|| 16.1% | 125 | 6.28 | 4.9% |half_
|| 8.0% | 62 | 6.25 | 9.5% |full_
|| 6.8% | 53 | 1.88 | 3.5% |artv_
|| 4.9% | 38 | 1.34 | 3.6% |bnd_
|| 3.6% | 28 | 2.00 | 6.9% |currenf_
|| 2.2% | 17 | 1.50 | 8.6% |bndsf_
|| 1.7% | 13 | 1.97 | 13.5% |model_
|| 1.4% | 11 | 1.53 | 12.2% |cfl_
|| 1.3% | 10 | 0.75 | 7.0% |currenh_
|| 1.0% | 8 | 5.28 | 41.9% |bndbo_
|| 1.0% | 8 | 8.28 | 53.4% |bndto_
||==
| 5.4% | 42 | -- | -- |MPI
||--
|| 1.9% | 15 | 4.62 | 23.9% |mpi_sendrecv_
|| 1.8% | 14 | 16.53 | 55.0% |mpi_bcast_
|| 1.7% | 13 | 5.66 | 30.7% |mpi_barrier_
|===

October 12-13 2011 33 Cray Inc.

pat_report: Flat Profile

Table 1: Profile by Function Group and Function

 Time % | Time |Imb. Time | Imb. | Calls |Group
 | | | Time % | | Function
 | | | | | PE='HIDE'

 100.0% | 104.593634 | -- | -- | 22649 |Total
|--
| 71.0% | 74.230520 | -- | -- | 10473 |MPI
||---
|| 69.7% | 72.905208 | 0.508369 | 0.7% | 125 |mpi_allreduce_
|| 1.0% | 1.050931 | 0.030042 | 2.8% | 94 |mpi_alltoall_
||===
| 25.3% | 26.514029 | -- | -- | 73 |USER
||---
|| 16.7% | 17.461110 | 0.329532 | 1.9% | 23 |selfgravity_
|| 7.7% | 8.078474 | 0.114913 | 1.4% | 48 |ffte4_
||===
| 2.5% | 2.659429 | -- | -- | 435 |MPI_SYNC
||---
|| 2.1% | 2.207467 | 0.768347 | 26.2% | 172 |mpi_barrier_(sync)
||===
| 1.1% | 1.188998 | -- | -- | 11608 |HEAP
||---
|| 1.1% | 1.166707 | 0.142473 | 11.1% | 5235 |free
|==

October 12-13 2011 34 Cray Inc.

pat_report: Message Stats by Caller

Table 4: MPI Message Stats by Caller

 MPI Msg |MPI Msg | MsgSz | 4KB<= |Function
 Bytes | Count | <16B | MsgSz | Caller
 | | Count | <64KB | PE[mmm]
 | | | Count |

 15138076.0 | 4099.4 | 411.6 | 3687.8 |Total
|--
| 15138028.0 | 4093.4 | 405.6 | 3687.8 |MPI_ISEND
||---
|| 8080500.0 | 2062.5 | 93.8 | 1968.8 |calc2_
3| | | | | MAIN_
||||---
4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0
4||| 8208000.0 | 2000.0 | -- | 2000.0 |pe.9
4||| 6160000.0 | 2000.0 | 500.0 | 1500.0 |pe.15
||||===
|| 6285250.0 | 1656.2 | 125.0 | 1531.2 |calc1_
3| | | | | MAIN_
||||---
4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0
4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.3
4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.5
||||===
. . .

October 12-13 2011 35 Cray Inc.

  AMD Opteron Hardware Performance Counters
•  Four 48-bit performance counters.

  Each counter can monitor a single event
o  Count specific processor events

»  the processor increments the counter when it detects an occurrence of the
event

»  (e.g., cache misses)
o  Duration of events

»  the processor counts the number of processor clocks it takes to complete an
event

»  (e.g., the number of clocks it takes to return data from memory after a cache
miss)

•  Time Stamp Counters (TSC)
  Cycles (user time)

October 12-13 2011 Cray Inc. 37

  Common set of events deemed relevant and useful for application
performance tuning
•  Accesses to the memory hierarchy, cycle and instruction counts,

functional units, pipeline status, etc.
•  The “papi_avail” utility shows which predefined events are available on the

system – execute on compute node

  PAPI also provides access to native events
•  The “papi_native_avail” utility lists all AMD native events available on the

system – execute on compute node

  PAPI uses perf_events Linux subsystem

  Information on PAPI and AMD native events
•  pat_help counters
•  man intro_papi

October 12-13 2011 Cray Inc. 38

  HW counter collection enabled with PAT_RT_HWPC
environment variable

  PAT_RT_HWPC <set number> | <event list>

•  A set number can be used to select a group of predefined hardware
counters events (recommended)
  CrayPat provides 22 groups on the Cray XT/XE systems
  See pat_help(1) or the hwpc(5) man page for a list of groups

•  Alternatively a list of hardware performance counter event names can
be used

•  Hardware counter events are not collected by default

October 12-13 2011 Cray Inc. 39

  Raw data

  Derived metrics

  Desirable thresholds

October 12-13 2011 Cray Inc. 40

 PAPI_TLB_DM Data translation lookaside buffer misses
 PAPI_L1_DCA Level 1 data cache accesses
 PAPI_FP_OPS Floating point operations
 DC_MISS Data Cache Miss
 User_Cycles Virtual Cycles
==
USER
--
 Time% 98.3%
 Time 4.434402 secs
 Imb.Time -- secs
 Imb.Time% --
 Calls 0.001M/sec 4500.0 calls
 PAPI_L1_DCM 14.820M/sec 65712197 misses
 PAPI_TLB_DM 0.902M/sec 3998928 misses
 PAPI_L1_DCA 333.331M/sec 1477996162 refs
 PAPI_FP_OPS 445.571M/sec 1975672594 ops
 User time (approx) 4.434 secs 11971868993 cycles 100.0%Time
 Average Time per Call 0.000985 sec
 CrayPat Overhead : Time 0.1%
 HW FP Ops / User time 445.571M/sec 1975672594 ops 4.1%peak(DP)
 HW FP Ops / WCT 445.533M/sec
 Computational intensity 0.17 ops/cycle 1.34 ops/ref
 MFLOPS (aggregate) 1782.28M/sec
 TLB utilization 369.60 refs/miss 0.722 avg uses
 D1 cache hit,miss ratios 95.6% hits 4.4% misses
 D1 cache utilization (misses) 22.49 refs/miss 2.811 avg hits
==

October 12-13 2011 Cray Inc. 41

PAT_RT_HWPC=1
 Flat profile data
 Raw counts
 Derived metrics

See pat_help -> counters -> amd_fam15h –> groups

 0: Summary with instructions metrics
 1: Summary with TLB metrics
 2: L1 and L2 Metrics
 3: Bandwidth information
 4: <Unused>
 5: Floating operations dispatched
 6: Cycles stalled, resources idle
 7: Cycles stalled, resources full
 8: Instructions and branches
 9: Instruction cache
 10: Cache Hierarchy (unsupported for IL)

October 12-13 2011 Cray Inc. 42

 11: Floating point operations dispatched
 12: Dual pipe floating point operations dispatched
 13: Floating point operations SP
 14: Floating point operations DP
 L3 (socket and core level) (unsupported)
 19: Prefetchs
 20: FP, D1, TLB, MIPS <<-new for Interlagos
 21: FP, D1, TLB, Stalls
 22: D1, TLB, MemBW

October 12-13 2011 Cray Inc. 43

  Group 20: FP, D1, TLB, MIPS
 PAPI_FP_OPS
 PAPI_L1_DCA
 PAPI_L1_DCM
 PAPI_TLB_DM
 DATA_CACHE_REFILLS_FROM_NORTHBRIDGE
 PAPI_TOT_INS

  Group 21: FP, D1, TLB, Stalls
 PAPI_FP_OPS
 PAPI_L1_DCA
 PAPI_L1_DCM
 PAPI_TLB_DM
 DATA_CACHE_REFILLS_FROM_NORTHBRIDGE
 PAPI_RES_STL

October 12-13 2011 Cray Inc. 44

October 12-13 2011 Cray Inc. 45

Hardware performance counter events:
 PAPI_L1_DCM Level 1 data cache misses
 CYCLES_RTC User Cycles (approx, from rtc)
 PAPI_L1_DCA Level 1 data cache accesses
 PAPI_TLB_DM Data translation lookaside buffer misses
 PAPI_FP_OPS Floating point operations

Estimated minimum overhead per call of a traced function,
 which was subtracted from the data shown in this report
 (for raw data, use the option: -s overhead=include):
 PAPI_L1_DCM 8.040 misses
 PAPI_TLB_DM 0.005 misses
 PAPI_L1_DCA 474.080 refs
 PAPI_FP_OPS 0.000 ops
 CYCLES_RTC 1863.680 cycles
 Time 0.693 microseconds

October 12-13 2011 Cray Inc. 46

==
USER
--
 Time% 98.3%
 Time 4.436808 secs
 Imb.Time -- secs
 Imb.Time% --
 Calls 0.001M/sec 4500.0 calls
 DATA_CACHE_REFILLS:
 L2_MODIFIED:L2_OWNED:
 L2_EXCLUSIVE:L2_SHARED 9.821M/sec 43567825 fills
 DATA_CACHE_REFILLS_FROM_SYSTEM:
 ALL 24.743M/sec 109771658 fills
 PAPI_L1_DCM 14.824M/sec 65765949 misses
 PAPI_L1_DCA 332.960M/sec 1477145402 refs
 User time (approx) 4.436 secs 11978286133 cycles 100.0%Time
 Average Time per Call 0.000986 sec
 CrayPat Overhead : Time 0.1%
 D1 cache hit,miss ratios 95.5% hits 4.5% misses
 D1 cache utilization (misses) 22.46 refs/miss 2.808 avg hits
 D1 cache utilization (refills) 9.63 refs/refill 1.204 avg uses
 D2 cache hit,miss ratio 28.4% hits 71.6% misses
 D1+D2 cache hit,miss ratio 96.8% hits 3.2% misses
 D1+D2 cache utilization 31.38 refs/miss 3.922 avg hits
 System to D1 refill 24.743M/sec 109771658 lines
 System to D1 bandwidth 1510.217MB/sec 7025386144 bytes
 D2 to D1 bandwidth 599.398MB/sec 2788340816 bytes
==

D1 + D2 cache utilization: 39.8% of total execution time was spent in 4
 functions with combined D1 and D2 cache hit ratios below the
 desirable minimum of 97.0%. Cache utilization might be improved by

 modifying the alignnment or stride of references to data arrays in
 these functions.

 D1_D2_cache_hit_ratio Time% Function

 56.8% 12.0% calc3_
 77.9% 6.4% calc2_
 95.7% 1.4% calc1_

 96.3% 20.0% calc3_.LOOP@li.80

TLB utilization: 19.6% of total execution time was spent in 3 functions
 with fewer than the desirable minimum of 512 data references per TLB
 miss. TLB utilization might be improved by modifying the alignnment

 or stride of references to data arrays in these functions.

 LS_per_TLB_DM Time% Function
 2.56 12.0% calc3_
 5.32 6.3% calc2_

October 12-13 2011 Cray Inc. 47

October 12-13 2011 Cray Inc. Slide 49

Call Graph Profile

Communication &
I/O Activity View

Load balance
views

Function Profile

Time Line
& I/O Views

Pair-wise
Communication
View

Function
Overview

Source code
mapping

  Call graph profile
  Communication statistics
  Time-line view

•  Communication
•  I/O

  Activity view
  Pair-wise communication

statistics
  Text reports
  Source code mapping

  Cray Apprentice2 helps identify:
•  Load imbalance
•  Excessive communication
•  Network contention
•  Excessive serialization
•  I/O Problems

October 12-13 2011 50 Cray Inc.

October 12-13 2011 Cray Inc. 51

Switch Overview display	

October 12-13 2011 52 Cray Inc.

October 12-13 2011 Slide
53 Cray Inc.

October 12-13 2011 54 Cray Inc.

Min, Avg, and Max
Values	

-1, +1
Std Dev
marks	

October 12-13 2011 55 Cray Inc.

Function	

List	

Load balance overview:	

Height  Max time	

Middle bar  Average time	

Lower bar  Min time	

Yellow represents
imbalance time 	

Zoom	

Height  exclusive time	

Width  inclusive time	

DUH Button:	

Provides hints
for performance
tuning	

Filtered	

nodes or	

sub tree	

October 12-13 2011 56 Cray Inc.

Function	

List off	

Right mouse click:	

Node menu	

e.g., hide/unhide
children	

Sort options	

% Time,	

Time,	

Imbalance %	

Imbalance time	

Right mouse click:
View menu:
e.g., Filter

October 12-13 2011 57 Cray Inc.

October 12-13 2011 Slide 58

Cray Inc.

October 12-13 2011 Slide 59 Cray Inc.

October 12-13 2011 Slide 60 Cray Inc.

-1, +1
Std Dev
marks	

Min, Avg, and Max
Values	

October 12-13 2011 61 Cray Inc.

October 12-13 2011 62 Cray Inc.

  Complimentary performance data available in one place

  Drop down menu provides quick access to most common
reports

  Ability to easily generate different views of performance data

  Provides mechanism for more in depth explanation of data
presented

October 12-13 2011 Cray Inc. 63

October 12-13 2011 Cray Inc.

New	
 text	

table	
 icon	

Right	
 click	
 for	

table	

generaEon	

opEons	

64

October 12-13 2011 Cray Inc. 65

  TLB utilization: < 90.0%
•  Measures how well the memory hierarchy is being utilized with regards to TLB
•  This metric depends on the computation being single precision or double precision

  A page has 4 Kbytes. So, one page fits 512 double precision words or 1024 single
precision words

•  TLB utilization < 1 indicates that not all entries on the page are being utilized
between two TLB misses

  Cache utilization: < 1 (D1 or D1+D2)
•  A cache line has 64 bytes (8 double precision words or 16 single precision words)
•  Cache utilization < 1 indicates that not all entries on the cache line are being utilized

between two cache misses

  D1 cache hit (or miss) ratios: < 90% (> 10%)
  D1 + D2 cache hit (or miss) ratios: < 92% (> 8%)

•  D1 and D2 caches on the Opteron are complementary
•  This metric provides a view of the Total Cache hit (miss) ratio

October 12-13 2011 Cray Inc. 66

  Cray XE6

  Runs CLE 4.0.UP00

  20 Compute nodes
•  2 MC12 chips (24 cores per node)
•  1.9 GHz
•  32 GB memory

  Lustre parallel filesystem

  Usage information available at:
•  https://partners.cray.com/

October 12-13 2011 Cray Inc. 68

  Allow users to familiarize themselves with Cray XE6 system
  Aid in port applications to Cray XE6
  Provide platform for the optimization and tuning of Cray XE6

applications

  System is relatively small
  Shared by many users
  Job execution time limits in place
  Limit large jobs (15-20 compute nodes) to 10 minutes or less
  Small jobs (1 or 2 nodes) can run longer (more than an hour

is ok)
  xtnodestat shows current system layout

October 12-13 2011 Cray Inc. 69

  To see list of modulefiles loaded by default:
•  % module list

  To see list of available modulefiles :
•  % module avail!

  To swap a modulefile
•  % module swap PrgEnv-pgi PrgEnv-cray!

  To load the performance tools!
•  % module load perftools!

October 12-13 2011 Cray Inc. 70

  Cray XE6 systems use compiler driver scripts:
•  Automatically reference MPI, PGAS, SHMEM
•  Should be used with all programming environments (Cray, PGI, GNU,

Intel)
  % ftn –h profile_generate –o test1 test1.f!
  cc –h profile_generate –o test2 test2.c!

  Compilers require you to target a processor
•  xtpe-mc12 modulefile is loaded by default

  Cray and PGI compilers target MC by default

October 12-13 2011 Cray Inc. 71

  Name for Lustre filesystem is /lus/scratch!
•  Create directory here using your login!

  Batch scheduler is PBS!

  Job queue names available:!
•  small walltime=6hrs, nodelimit=4 nodes
•  medium walltime=6hrs, nodelimit=8 nodes
•  large walltime=6hrs, nodelimit=16 nodes
•  long walltime=24hrs, nodelimit=4 nodes

% qsub -l mppwidth=96 -l mppnppn=24 -q large testrun.pbs!

!

October 12-13 2011 Cray Inc. 72

Job	
 size	

#	
 of	
 processes	
 per	
 node	
 (1	
 –	
 24)	

October 12-13 2011 Cray Inc. 73

#PBS -l mppwidth=24 !
#PBS -l mppnppn=4 !
#PBS -l walltime=00:10:00 !
#PBS -j oe !
!
cd $PBS_O_WORKDIR !
aprun -n 24 -N 4 ./mpi_app!

High Bridge PE Workshop October 12-13, 2011

