
RESEARCH CHALLENGE
While pure MPI parallelization can be near optimal in terms 

of speed, the total number of cores used can be limited by the 
memory usage. In our BATS–R–US MHD code [1], for exam-
ple, most but not all of the data are distributed over the proces-
sors. In particular, the description of the adaptive tree of the grid 
blocks is stored on all the MPI processes so that finding neigh-
bor blocks or finding the grid block covering some spatial loca-
tion can be done efficiently. The size of this array grows with the 
problem size and eventually can become a bottleneck. This is-
sue can be mitigated by using OpenMP parallelization because 
the amount of memory occupied by the repeated arrays on a giv-
en node will be reduced proportionally with the number of MPI 
processes per node. Correspondingly, one can scale the model 
to a larger number of cores. With dozens of cores per node on 
current architectures this difference is significant, by a factor of 
15 to 30 or even more. 

Adding OpenMP into a complex MPI parallel code is not sim-
ple. BATS–R–US consists of about 250,000 lines of Fortran 90+ 
code without counting comments and empty lines. The workload 
is distributed over a large fraction of the source code. The goal is 
to add OpenMP parallelization that obtains good performance 
with a reasonable development time investment. 

The team’s primary goal is to allow scaling BATS–R–US to 
hundreds of thousands of cores on new computers to solve large 
problems efficiently. Further, the researchers’ work and experi-
ence should help in making similar projects run smoothly and 
efficiently.

METHODS & CODES
The researchers’ multiphysics code BATS–R–US can solve var-

ious partial differential equations with a large variety of numer-
ical schemes on a block adaptive grid. The grid blocks consist of 
a fixed number of grid cells, typically 4 x 4 x 4 to 8 x 8 x 8 cells, 
although their physical size may vary. The code loops over grid 
blocks and performs various computations such as calculating 
fluxes and sources for each grid cell and then updates the grid cell 
value, etc. There are two possible implementation strategies for 
OpenMP: (1) parallelize the loops over grid cells (fine-grained) 
or (2) parallelize loops over grid blocks (coarse-grained).

The team chose the coarse-grained option for several reasons. 
In the overall algorithm, the loops over the cells contain less work 
than the loops over the blocks. There are many more loops over 
cells than loops over blocks, so a fine-grained approach would 
require adding more OpenMP parallel sections. For many loops 
over the grid cells the work per cell may be insufficient to make 
the OpenMP parallelization efficient given the overhead of start-
ing and closing the multithreaded section. A significant diffi-
culty with the coarse-grained approach is finding and resolving 
race conditions. It took significant effort for the team to find the 
appropriate tool: Intel’s Inspector turned out to be invaluable.

RESULTS & IMPACT
The team’s strategy required relatively modest code chang-

es: only 609 OpenMP directive lines were added to the 250,000-
line source code. Most of the changes were declaring variables 
as thread private or moving module variables into subroutines 
when convenient. The team also learned to look out for variable 
initializations, which make local subroutine variables behave as 
shared by default. 

Fig. 1 shows that by using the OpenMP + MPI parallelization, 
BATS–R–US can run on more than 500,000 cores. Running 32 
threads per node requires communication between the two sock-
ets; still, the performance is about 50% of the ideal scaling, which 
is quite reasonable. With 16 threads per node BATS–R–US can 
scale up to approximately 250,000 cores and obtain around 80% 
of the ideal performance. In comparison, the pure MPI paral-
lelization can run only up to about 16,000 cores before running 
out of memory. The researchers obtained similar results when 
running the code with an implicit solver. 

The team also learned that for some compilers, switching on 
the OpenMP library can severely impact code performance (a 
slowdown of up to a factor of three) even if only one thread is 
used per MPI process. It is important to make sure that the code 
is portable and performs well for a compiler that runs efficient-
ly with the OpenMP library. The researchers also found that the 
pinning of the OpenMP threads (assigning them to the proper 
CPU cores with respect to the MPI processes) can be quite com-
plicated and the proper settings vary from platform to platform 
and even from compiler to compiler. A simple C code reporting 
of which core is used by a certain thread and MPI process is in-
valuable to verify that the pinning works as expected.

WHY BLUE WATERS
Blue Waters provided a platform with the appropriate hard-

ware, software, and computing environment to make good prog-
ress with this project. On most systems it is practically impossi-
ble to run on more than about 10,000 cores with reasonable turn-
around times. On Blue Waters, the team could scale up to about 
500,000 cores. The variety of compilers allowed for testing the ef-
ficiency of the hybrid parallelization comprehensively and iden-
tifying some of the not-so-well-known problems. 

PUBLICATIONS & DATA SETS
H. Zhou and G. Toth, “Efficient OpenMP parallelization to a 

complex MPI parallel magnetohydrodynamics code,” J. Parallel 
Distributed Comput., vol. 139, pp. 65–74, May 2020.

SCALING THE BATS–R–US MHD MODEL TO OVER 100,000 CORES 
WITH EFFICIENT HYBRID OPENMP AND MPI PARALLELIZATION
Allocation: GLCPC/360 Knh
PI: Gabor Toth1 
Collaborator: Hongyang Zhou1

1University of Michigan

EXECUTIVE SUMMARY
This project aims to optimize and improve multilevel paral-

lelization of the computationally most expensive components of 
the space weather modeling framework. One of the most import-
ant and computationally expensive models in the framework is 
the BATS–R–US magnetohydrodynamic (MHD) code. With pure 
MPI parallelization it is limited to about 32,000 cores owing to 
memory constraints. The research team has designed and imple-

mented an efficient hybrid MPI + OpenMP parallelization. The 
main idea is to assign grid blocks consisting of hundreds of grid 
cells to each OpenMP thread. This is much easier to implement 
than a cell-by-cell multithreading approach, and it is also more 
efficient. The new version of the code can scale to over 100,000 
cores on Blue Waters while maintaining high efficiency. 

Figure 1: Weak scaling of BATS–R–US on Blue Waters. A 3D MHD problem is solved on a grid consisting of 131,072 grid cells per core using 8 x 8 x 8-cell blocks. There 
are 256 to 8,192 grid blocks per MPI process depending on the number of OpenMP threads. The dashed line indicates ideal linear scaling.

	 2019BLUE WATERS ANNUAL REPORT

72 73




