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EXECUTIVE SUMMARY 
Plasmonics aims to manipulate light through choice of ma-

terials and nanoscale structure. Finding materials that exhibit 
low-loss responses to applied optical fields while remaining fea-
sible for widespread use is an outstanding challenge. Online da-
tabases have compiled computational data for numerous prop-
erties of tens of thousands of materials. Owing to the large num-
ber of materials and high computational cost, it is not viable to 
compute optical properties for all materials from first principles. 

For this project, plasmonic quality factors for a training set 
of 1,000 metals and 2,000 semiconductors were computed us-
ing density functional theory (DFT) and the Drude model. The 
research team trained regressors to rapidly screen the Materials 
Project (MP) database to identify potential new plasmonic met-
als. Descriptors were limited to symmetry and quantities ob-
tained using the chemical formula. The machine learning mod-
els filtered through 7,445 metals in the MP database. From this, 
the team predicted AlCu3, ZnCu, and ZnGa3 as candidates and 
verified their quality factors with DFT.

RESEARCH CHALLENGE
As mentioned before, the field of plasmonics seeks to manipu-

late light at the nanoscale. Precise control over plasmon response 
enables many applications including subwavelength waveguides 
[1], nanoantennas [2], superlenses [3], subwavelength imaging [4], 
nanocircuitry [5], and biosensors [6]. Currently used plasmonic 
materials consist of noble metals and electron-doped semicon-
ductors with high electrical conductivity [7]. Unfortunately, no-
ble metals suffer from large losses in the visible spectrum owing 
to absorption while semiconductors require high electron dop-
ing concentrations. Further advances of plasmon-based technol-
ogy require finding new high-performance materials.

METHODS & CODES
To quantify the response of a material to an applied electrical 

field, the team computed its dielectric function. Two dominant 
contributions to the dielectric function were considered: inter-
band transitions of electrons from valence states to conduction 
states and intraband oscillations of electrons near the Fermi ener-
gy. Interband transitions were captured through DFT calculations 
performed using the Vienna Ab initio Software Package (VASP) 
[8]. The contribution to the dielectric function from intraband 
oscillations was described by the Drude conduction model with 

a plasma frequency obtained through DFT. From the dielectric 
functions, plasmonic quality factors were computed based on an-
alytic equations. DFT input files for 1,000 metals and 2,000 semi-
conductors to form the training sets were randomly chosen from 
the MP database with the pymatgen open source library [9,10].

Random forest regressors with adaptive boosting implemented 
in scikit-learn [11] related material descriptors to the DFT-cal-
culated plasmonic quality factors. The descriptors consist of ma-
terial properties readily obtainable from the chemical formulas 
and standard tables, e.g., atomic masses and electronegativities. 
Constructed models were validated using an 80–10–10 valida-
tion scheme. With this approach, 10% of materials in the training 
set were randomly selected to form a testing set to be left fixed 
throughout the process. The remaining materials were randomly 
divided 80%–10% into fitting and validation sets. The fitting set 
was used to fit the model, with the model subsequently applied 
to the validation set. Model construction was then iterated over 
100 random fitting–validation divisions. Each model was applied 
to all metals and semiconductors in the MP database to predict 
quality factors for all available materials. For the 200 materials 
with the largest predicted quality factors, the dielectric functions 
and quality factors were explicitly calculated with DFT.

Figure 1: Comparison of metal plasma frequency predicted via machine-learned 
regressor vs. calculated with DFT. Plotted are the results of one fitting–validation 
iteration and average values and error bars for 100 iterations for testing. The red 
line is to guide the eye for machine learning predictions matching the DFT value.

RESULTS & IMPACT
We have used DFT calculations of materials’ dielectric func-

tions to train and validate machine learning models which pre-
dict plasma frequencies and plasmonic quality factors for metals 
and semiconductors in the Materials Project database.  The con-
structed models allow for rapid calculation of the optical proper-
ties necessary to predict the suitability of a material for plasmonic 
applications.  By applying the models to a large database, we have 
been able to search for predicted high-quality factor metals and 
semiconductors without requiring explicit DFT calculations for 
all materials in the database, significantly reducing the compu-
tational cost.  From the database metals, we have identified three 
potential new metals, AlCu3, ZnCu, and ZnGa3.  AlCu3 and ZnCu 
are predicted to match or outperform the commonly used Au, 
and Cu for energies between 1 eV and 2 eV, the infrared and low 
energy end of the visible spectrum.  ZnGa3 shows high-quality 
factors for energies between 2 eV and 3 eV, outperforming cur-
rently used metals for higher-energy plasmonics.

WHY BLUE WATERS
The present research requires DFT simulations for thousands 

of materials with up to dozens of atoms. The computational cost 
for DFT calculations is further increased by the need for accu-
rately mapping the electronic energies near the Fermi surface. 
Dense 31 x 31 x 31 point meshes to sample momentum space 
are required to obtain converged calculations of the electronic 
properties near the Fermi energy. This imposes challenging re-
quirements for CPU hours that cannot be met by a system such 
as the Campus Cluster. The computational cost of DFT scales as 
the cube of the number of electrons; for large system sizes such 
as in this project, available computing power can quickly become 
a limiting factor. Efficiently carrying out electronic structure DFT 
calculations for this work requires nodes with fast communica-
tion. In addition, this research requires multiple of these runs 
and, hence, it needs a machine such as Blue Waters that allows 
the research team to routinely carry out this work.
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Figure 2: Computed plasmonic quality factor for currently used metals, Ag, Au, 
and Cu, and proposed new plasmonic metals, AlCu3, ZnCu, and ZnGa3.  Vertical 
dashed lines correspond to operating energies of commonly used lasers.  AlCu3 
and ZnCu are candidate plasmonic metals at low energy while ZnGa3 shows 
large-quality factors in the UV spectrum.
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