
MACHINE LEARNING FOR ERROR QUANTIFICATION IN 
SIMULATING THE CLIMATE IMPACTS OF ATMOSPHERIC 
AEROSOLS
Allocation: Innovation and Exploration/200 Knh
PI: Nicole Riemer1

1University of Illinois at Urbana–Champaign

EXECUTIVE SUMMARY 
Atmospheric aerosol particles influence the large-scale dynam-

ics of the atmosphere and climate because they interact with so-
lar radiation, both directly by scattering and absorbing sunlight 
and indirectly by forming clouds. Current climate simulations 
use highly approximate aerosol models with large and unquan-
tified errors. 

To address this uncertainty, the PI applied a new ultrahigh-de-
tail spatially resolved and particle-resolved aerosol model, WRF–
PartMC, which tracks size and composition information on a 
per-particle basis. The scientists then used its model output to 
train machine learning models to predict errors owing to a sim-
plified representation of the aerosol. This allows error predic-
tions merely on the basis of output from the simplified model 
without running a computationally expensive particle-resolved 
benchmark case. The scientific impact of this work is the devel-
opment of a new, innovative method that changes the way aero-
sol impacts on climate are quantified in current regional and 
global climate models. 

RESEARCH CHALLENGE
One of the largest uncertainties in global climate prediction in-

volves aerosols and their impacts on the radiative budget, a top-
ic of great societal relevance [1]. Aerosol interactions are influ-
enced by both the size and composition of individual particles. 
Models provide important insights in the study of aerosols but 
experience a trade-off between the representation of physical 
detail and spatial resolution. State-of-the-art 3D weather- and 
climate-scale models focus on large-scale transport but assume 
a crudely simplified aerosol representation. Commonly applied 
simplifications assume that all particles look very similar with-
in a particle population, which is typically not representative of 
reality. In contrast, current-generation box models capture the 
small-scale features of aerosol physics and chemistry but cannot 
resolve spatial heterogeneities of aerosol populations. As a result, 
simulating the evolution of aerosols and predicting their impacts 
remains a challenge owing to the multiscale nature of the system.

METHODS & CODES 
To address these research challenges, the PI has developed the 

particle-resolved aerosol model WRF–PartMC, which is the first 
model explicitly resolving the evolution of individual aerosol par-

ticles within the grid cells of a state-of-the-art atmospheric fluid/
meteorology model. This model makes no simplifying assump-
tion in regard to aerosol composition. Therefore, WRF–PartMC 
is uniquely suited to fill the role of a benchmark model for simu-
lating atmospheric aerosol composition. The particle composi-
tion of hundreds of billions of particles in the atmosphere is rep-
resented at a given time, and each particle’s composition evolves 
over time owing to coagulation with other particles and conden-
sation of gas vapors.

WRF–PartMC simulations provide a wealth of data on aero-
sol mixing state and aerosol aging under different environmental 
conditions. The data generated give one training sample per grid 
cell per timestep, consisting of the global model state variables 
in that grid cell and the computed error for the grid cell. The PI 
uses these data combined with state-of-the-art machine learning 
techniques to train models for predicting errors in climate-rel-
evant quantities such as optical properties and cloud-forming 
abilities, which occur when using simplified aerosol treatments. 
This will allow researchers to make error predictions merely on 
the basis of output from the simplified model without running 
a computationally expensive particle-resolved benchmark case. 

RESULTS & IMPACT
The PI conducted several particle-resolved simulations for the 

domain of northern California. The output will serve as training 
data for the machine learning portion of the project. These sto-
chastic simulations utilize realistic source-resolved emissions, ca-
pable of modeling different emission sectors such as diesel vehi-
cles, gasoline vehicles, and power plants, which all have complex 
aerosol composition. Each simulation was initialized for June 17, 
2010, and simulated 24 hours, utilizing 6,656 cores and 12 wall-
clock hours. Simulations consisted of 5,000 computational par-
ticles per grid cell with a domain size of 170 × 160 and 40 verti-
cal levels. Each simulation models the complex aerosol dynamics 
and chemistry for on the order of 5 billion individual particles, 
where each particle is represented as a vector of masses of 20 
aerosol species. Simulations of this size were previously unfea-
sible. Now that such simulations can be conducted, errors ow-
ing to aerosol representation can be quantified.

The mixing state parameter χ, as described in [2], quantifies 
the extent to which the particle population is internally mixed by 
examining how complex individual particles are and how simi-

lar the particles are within the population. The mixing state pa-
rameter varies from 0% to 100%, ranging from all particles con-
taining a single species to 100%, where all particles are identical 
in composition. Fig. 1 shows relative error in CCN (cloud con-
densation nuclei) number concentrations as a function of mix-
ing state parameter. Particle populations are projected to fully 
internally mixed populations, a common representation in oth-
er models. When particle populations are further from the mod-
el assumption of internally mixed (χ = 100%), models typically 
overestimate the number of CCN available for cloud formation. 
This has implications for cloud radiative properties that depend 
on droplet number and size.

WHY BLUE WATERS
Access to the computational power and storage space on Blue 

Waters allows for running simulations to produce data for ma-
chine learning. Simulations rely on sufficient memory per core 
to produce statistically powerful particle populations. Working 
alongside Blue Waters’ staff has alleviated a large portion of the 
performance issues regarding output by removing tiny writes of 
data and paying careful attention to what information is output. 
Reducing the cost of output allows more frequent output, which 
in turn provides more data for machine learning, as it requires 
the entire particle state.

Figure 1: Relative error in cloud condensation number concentrations when assuming an internally mixed aerosol as a function of mixing state parameter χCCN. The mixing 
state parameter is 100% for completely internal mixtures and 0% for completely external mixtures.
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