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EXECUTIVE SUMMARY
Predictive simulations of turbulent combustion are crucial to 

the design of energy-conversion systems in the transportation, 
power, and defense sectors, among others. Due to their multi-
scale, multiphysics nature, these systems are typically intractable 
to simulation at full resolution. Lower-resolution simulations are 
possible but require closure models; currently, state-of-the-art 
closure models fail to capture key dynamics in certain regimes 
of turbulent combustion, and the use of these models can lead 
to incorrect predictions. 

The research team has developed a novel approach for the de-
sign of turbulence closure models utilizing machine learning (ML) 
techniques and large-scale, fully resolved computational data sets. 
The team trains and refines neural network-based models across 
the problematic regimes, then refines the models using an adjoint 
solution, which is analogous to an on-the-fly error-control pro-
cedure. The resulting ML-based models are more accurate than 
the most commonly used models and can be generalized to dif-
ferent applications. Alternatively, the deep learning model can 
be harnessed to produce predictions of similar accuracy to those 
of existing models at reduced computational cost. 

RESEARCH CHALLENGE
Turbulent combustion is an inherently multiscale, multiphysics 

phenomenon relevant to virtually every sector in which chemical 
energy is converted to mechanical energy. Modern combustors 
for gas turbines, internal combustion engines, rocket propulsion, 
and hypersonic flight all require turbulent flow to enhance fuel–
oxidizer mixing and to increase burning rates. Accurate predic-
tion of the performance, efficiency, and emissions of these devic-
es is an essential aspect of the engineering design and test cycle. 

However, the most common closure models used to make these 
predictions computationally tractable are based on nonreacting 
turbulence theory and are known to fail in regimes relevant to 
the next generation of clean combustors. One key challenge is the 
prediction of turbulence–combustion interactions in premixed 
flames. These interactions are necessarily precluded by the use 
of nonreacting turbulence models [1–3]. Linearly coupled react-
ing-turbulence models have been developed [3,4] but are of lim-
ited use owing to their exclusion of nonlinear interactions. The 
research team therefore focuses on developing nonlinear mod-
els that are capable of capturing such interactions.

METHODS & CODES
The researchers have developed a machine learning approach 

to turbulence model development with a focus on predicting 
nonlinear turbulence–combustion interactions. Numerical da-
tabases from fully resolved direct numerical simulations (DNS) 
of turbulent combustion form the basis of these model-develop-
ment efforts. The team generates DNS databases across a range 
of turbulent combustion regimes using the semi-implicit, sec-
ond-order, energy-conservative code NGA [5,6]. These databas-
es are subsequently downsampled using a low-pass filter to ob-
tain flow fields comparable to those obtained from a large-eddy 
simulation (LES; i.e., modeled) calculation. Because the filtered 
fields originate from full-resolution data, the “true” model out-
puts are also available. Using deep neural networks as a nonlin-
ear statistical model, the team approximates these “true” out-
puts from input variables that are available in LES. The resulting 
models are tested a priori using out-of-sample DNS data and a 
posteriori by implementation in analogous LES calculations. As 
a novel approach to model development, they have developed a 
new DNS/LES code, PyFlow, that is capable of refining the model 
during the a posteriori step using an adjoint solution. This code 
is GPU-accelerated and has potential to address modeling chal-
lenges over a wide range of flows.

RESULTS & IMPACT
The initial results show an encouraging ability of the machine 

learning-based models to predict turbulence–combustion inter-
actions more accurately than traditional turbulence models. These 
findings are obtained from a priori testing and demonstrate that 
ML-based models have the potential to supplant traditional tur-
bulence models in LES. However, in a posteriori testing, the re-

searchers found that numerical errors (including finite-difference 
errors) owing to the reduced LES resolution accumulate in neu-
ral network inputs and reduce the models’ predictive accuracy. 
The issue of numerical error is unavoidable in LES but can po-
tentially be mitigated using the team’s a posteriori model refine-
ment step. By training in situ, models can be developed that are 
less sensitive to numerical error, for example, by reducing weights 
associated with error-prone inputs and hidden parameters. The 
a posteriori training step, therefore, represents a potentially sig-
nificant contribution to ML-based model development and LES 
of turbulent combustion.

WHY BLUE WATERS
This research relies on both CPU-only and GPU-accelerated 

compute nodes for different tasks. Because Blue Waters offers 
both types of nodes on a common file system, data access and 
sharing are greatly streamlined among tasks and project mem-
bers. Additionally, the team utilizes Blue Waters-specific Python 
installations and packages that are supported by NCSA project 
staff. These installations are optimized for Blue Waters and of-
fer substantially improved application performance compared to 
user-installed libraries.
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Figure 1: Illustration of a direct numerical simulation (DNS) of an expanding hydrogen–air premixed flame kernel (colored surfaces) in isotropic turbulence (grayscale 
background). The simulation is discretized using 1,0243 grid points and utilizes up to 16,384 cores. Machine learning models trained on many DNS databases are tested 
in analogous large-eddy simulations (LES).
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