
METHODS & CODES 
To find spin-liquids, the team has taken a two-fold approach. In 

one case, the researchers have mapped out a very general phase 
diagram of the stuffed honeycomb lattice that interpolates be-
tween a triangular and honeycomb lattice. To accomplish this, 
they have to find the lowest eigenvector of matrices, which are 68 
billion by 68 billion using a parallel exact diagonalization code the 
team developed. In an alternative approach, they have searched 
for a numerical Hamiltonian that best fits the collaborators’ ex-
periment on a spin-ice material [5]. 

The team has approached better quantum mechanical simu-
lations in two ways: by using deep neural networks and also by 
using an inverse approach. In the first case, they use deep neural 
networks to represent the quantum wave function. Wave func-
tions map electron positions to scalar amplitudes. To generate 
this amplitude, they take a configuration and have a deep neural 
net generate a matrix whose determinant is then evaluated [6]. 
This builds on other approaches [7] that have neural networks 
directly generate the amplitude. In the second case, the research-
ers have tackled the quantum many-body problem using an in-
verse approach that avoids the exponential cost of the forward 
method [8]. The team’s algorithm takes a targeted set of proper-
ties (encoded as a wave function) and outputs the Hamiltonians 
that might have generated it. This turns out to be extremely use-
ful because it is easy to write down wave functions with inter-
esting and exotic physics. 

RESULTS & IMPACT
The research group has determined that the phase diagram 

of the stuffed honeycomb lattice supports nine different phases. 
One of these phases is a spin-liquid phase that significantly ex-
pands the known spin-liquid regime on the triangular lattice [9]. 
This increases the chance that experimentalists might be able to 
find spin-liquid behavior in real materials.

In eigenstate phases, the team has discovered an entirely new 
type of eigenstate phase [10], making it the second nontrivial con-
crete example of this type of phase. This phase has eigenstates 
with two different types of intermixed eigenstates: some of the 
eigenstates have entanglement that grows logarithmically with 
system size, and some are constant. The implications of this dis-
covery is that whether the system equilibrates (i.e., the coffee cup 
cools) depends sensitively on the starting conditions of the system. 

The two algorithms the team has developed have significantly 
improved the regime of simulatable systems. The machine learn-
ing methodology extrapolates to the correct answer on difficult 
Hubbard systems in the regime where the researchers believe su-
perconductivity exists and competes favorably with other state-
of-the-art methods including the density matrix renormaliza-
tion group. The inverse approach the team has developed has 
allowed them to find a whole class of Hamiltonians that support 
a spin-liquid-like state. 

WHY BLUE WATERS
Without Blue Waters, the research team would not have been 

able to perform these calculations. The stuffed honeycomb sim-
ulations required diagonalization of huge matrices at over 200 
different phase points. For the eigenstate phases, the researchers 
needed ~100 different realizations for each of five different dis-
order strengths. Even testing and benchmarking the new algo-
rithms was a significant undertaking computationally; for exam-
ple, the deep neural network approaches scales of N4, where N is 
the size of the system. Without being able to run these simulations 
in parallel, the team would not have been able to obtain results.
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EXECUTIVE SUMMARY 
This work focuses on: (1) developing new machine-learning 

approaches to simulate the quantum many-body problem, and 
(2) elucidating novel phenomena in ayptically entangled phases. 
(The many-body problem, in brief, involves understanding the 
collective behavior of large numbers of interacting particles. En-
tanglement deals with the phenomenon of particles that remain 
correlated even when separated by great distances.) One new 
machine-learning approach [1] simulates difficult quantum ma-
ny-body electronic systems by combining deep neural networks 
with ideas originally developed by Feynman [2] about backflow. 
Using this new approach, the research team extrapolated to near 
exact energies on difficult quantum many-body systems and com-
peted favorably with other state-of-the-art methods. One import-
ant atypically entangled phase is the spin-liquid; the team has dis-
covered an expanded spin-liquid regime in the phase diagram of 
the stuffed honeycomb model.

RESEARCH CHALLENGE
Entanglement makes quantum mechanics both interesting and 

difficult to simulate. Einstein once described entanglement in 
quantum mechanics as “spooky action at a distance,” and phases 
of matter ranging from spin-liquids to eigenstate phases have ex-
otic properties because of their atypical entanglement. Entangle-
ment is also responsible for causing the cost of exactly simulating 
quantum many-body systems to scale exponentially with system 
size; every two years researchers can simulate one more electron.

The research team’s problem is twofold: to identify, classify, and 
find phases with interesting entanglement, as well as to devel-
op new methodologies based on ideas from machine learning to 
overcome the barriers to efficient simulation. The two phases of 
atypical entanglement the group is most interested in are spin-liq-
uids and eigenstate phases.

Spin-liquids [3] are phases of matter whose entanglement is 
so complicated that they can’t be constructed with short quan-
tum circuits. In spin-liquid materials, the electron “fractionaliz-
es,” splitting into multiple pieces. Spin-liquids support anyons, 
which are important for constructing quantum memories and 
quantum computers. While the theory of spin-liquids is well es-
tablished, the key question is to bring these spin-liquids into the 
real world by finding physical systems that support them.

Eigenstate phases [4] of matter are a recently discovered class 
of physical systems whose eigenstates have atypical entanglement. 
The entanglement of a typical eigenstate is boring; all particles 
are uniformly entangled with each other. On the other hand, in 
eigenstate phases, the entanglement in each eigenstate is high-
ly structured. In addition to weird entanglement, these states of 
matter never equilibrate—the equivalent of a never-cooling cup 
of coffee. Eigenstate phases might be the key to allowing quan-
tum computers to run at higher temperatures. The key question 
the team is addressing here is to increase the number of known 
eigenstate phases. 

Figure 1: Matrix to diagonalize without (left) and with (right) 
neural network added to the wave function for spin-up (top) 
and spin-down (bottom) electrons. The neural network wave 
function restores the symmetry between the spin-up and spin-
down electrons, which is known to exist in the exact wave 
function. Reproduced from [6].

Figure 2: Phase diagram of the Heisenberg model on the stuffed honeycomb model 
including all nine phases. Phase nine is the spin-liquid phase. Dots and stars indicate 
different types of fidelity dips signaling a change in the phase. 
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