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EXECUTIVE SUMMARY
Machine learning is an intriguing method to circumvent dif-

ficulties faced with the development and optimization of force 
field parameters. In this project, a deep neural network (DNN) 
was used to solve the inverse problem of the liquid-state theo-
ry—particularly, to find the relationship between the radial dis-
tribution function (RDF) and the Lennard–Jones (LJ) parame-
ters at various thermodynamic states. Using molecular dynamics 
(MD), many observables, including RDF, are uniquely determined 
by specifying the interatomic potentials. However, the inverse 
problem (e.g., determining the potential using a specific RDF) is 
not feasible through MD simulations unless it is combined with 
a complementary method. 

In this project, the PI developed a framework integrating DNN 
with 1.5-terabyte MD trajectories (26,000 distinct systems and a 
total simulation time of 52 microseconds) to predict LJ parame-
ters. The results show that DNN was successful not only in param-
etrization of the atomic LJ liquids but also in parameterizing the 
potentials for coarse-grained models of multiatom molecules.

RESEARCH CHALLENGE
The Lennard–Jones (LJ) potential form is one of the widely used 

interatomic potentials to study atomistic systems [1]. By specify-
ing the potential parameters and the thermodynamic state, MD 
can compute various quantities of interest such as the radial dis-
tribution function (RDF). However, given a specific RDF, MD 

cannot directly predict the potential parameters; i.e., the inverse 
problem is considered a difficult task [2]. As per Henderson’s the-
orem [3], the relationship between the pair potential and RDF is 
unique at a given thermodynamic state, implying that the poten-
tial parameters can be determined uniquely based on the RDF. 
In this work, the PI explored the feasibility of force field devel-
opment based on Henderson’s theorem with a data-driven and 
deep learning-based approach.

This inverse problem can also be viewed as a coarse-graining 
problem where the objective is to develop a pair-potential be-
tween coarse-grained particles such that the RDF of the original 
system is reproduced. While different frameworks such as the 
fundamental measure theory and integral equations have been 
developed to address this problem, both accuracy and general-
izability to more complex systems are still issues. Alternatively, 
reproducing a given RDF relies on MD to refine the potential pa-
rameters. For example, MD data are either integrated with a the-
oretical framework (e.g., iterative Boltzmann inversion) or used 
to optimize statistical errors with given RDFs (e.g., simplex and 
relative entropy). These approaches require thousands of simu-
lations for a specific system and the data are often not reused. 
The main bottleneck in reusing data to parameterize a new sys-
tem originates from the complexity of physics-based model de-
velopment and long-term storage of the data. To overcome these 
issues, recent data-driven approaches, known as the physics of 
big data [4], use surrogate models. 

Figure 1: Workflow of the current study. An MD engine 
(GROMACS) generated big data that is used in the training 
of a deep learning model.

Figure 2: Predictive capability 
of the model.

METHODS & CODES
The PI performed MD simulations using the GROningen MA-

chine for Chemical Simulations package (GROMACS). GRO-
MACS uses the well-known LJ potentials with the Verlet algo-
rithm. The deep learning model development was performed us-
ing TensorFlow on Blue Waters. Fig. 1c shows the workflow of 
the data generation, training, inference, and assessment phases. 

RESULTS & IMPACT
The PI assessed the performance of DNN by considering two 

cases. First, he investigated the generalizability and transferabil-
ity of the interatomic potential for LJ particles (development of 
atomistic force fields for single-atom particles). Second, he con-
sidered transfer learning for coarse-grained (CG) force-field de-
velopment. Generalizability points to using DNN to predict po-
tential parameters for LJ particles for a given thermodynamic 
data set. Transferability refers to using DNN to estimate poten-
tial parameters with thermodynamic states outside the training 
data set. Transfer learning refers to the use of DNN to estimate 
potential parameters for CG representation of simple multia-
tom molecules. 

Fig. 2 compares the predicted DNN and the ground truth po-
tential parameters used in the MD simulations. All the points 
are distributed almost uniformly around the one-to-one map-
ping line (the line on which the ground truth and DNN parame-
ters match exactly). While the thermodynamic states and RDFs 
vary for each point, the DNN is able to relate them correctly to 
the underlying potential parameters. The DNN results for the LJ 
particles exhibit no more than 4.4% mean absolute percentile er-
ror over the data set, which implies that the DNN is an efficient 
approach to solve the inverse problem of the liquid-state theo-
ry for the LJ particles. 

To investigate the transferability as a new coarse-graining route, 
the PI developed single-bead CG models of simple multiatom 

molecules such as carbon monoxide, fluorine, and methane. The 
center of mass RDFs of these systems were first obtained using 
all-atom MD simulations. Then, the center of mass RDFs and 
thermodynamic states were fed into the DNN, as shown in Fig. 
1. The results indicated that DNN force fields are indistinguish-
able from the other available methods. Considering that DNN 
is a single-shot method, its speed in deriving the CG force field 
is faster compared to the simplex and relative entropy methods. 
Following the procedure shown in Fig. 1, the PI assessed the ac-
curacy of CG models with two additional metrics: total devia-
tion in the RDFs and Kullback–Leibler (KL) divergence. Both er-
ror metrics show a small deviation from the DNN-predicted LJ 
parameters with a distance less than 0.1% of the maximum er-
ror. As DNN does not have prior knowledge about the informa-
tion theory (KL metric) or the statistical mechanics metric (er-
ror in the total variation of the RDF), the PI concluded that deep 
learning is a good coarse-graining strategy as it performs well 
on both metrics.

WHY BLUE WATERS
This project involved 40,000 MD simulations of up to 10,000 

atoms with a total simulation time of 52 microseconds. The fea-
sibility of such computations is a result of the petascale resourc-
es and GROMACS’ linear scaling on Blue Waters. Similarly, deep 
learning training using the TensorFlow module of Python relies 
heavily on access to the XK nodes on Blue Waters. Various neu-
ral network architectures were tried on Blue Waters (over 10 mil-
lion training iterations) to select the optimized network and to 
avoid overfitting and underfitting. 
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