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EXECUTIVE SUMMARY
The observation of two colliding neutron stars in gravitational 

waves and light marks the beginning of multimessenger 
astrophysics. To accelerate discovery in this emergent field of 
science, we pioneered the use of deep learning for rapid detection 
and characterization of gravitational wave signals. We initially 
demonstrated this approach using simulated Laser Interferometer 
Gravitational-Wave Observatory (LIGO) noise. We have now 
shown for the first time that deep learning can detect and 
characterize gravitational wave signals in real (nonstationary and 
non-Gaussian) LIGO data, achieving similar sensitivities and lower 
errors compared to established LIGO detection algorithms. This 
new paradigm is far more computationally efficient and resilient 
to glitches, allowing faster-than-real-time processing of weak 
gravitational waves in real LIGO data with minimal computational 
resources and the detection of new classes of gravitational wave 
sources that may go unnoticed with existing detection algorithms. 
In addition, the new paradigm is ideally suited to enable real-time 
multimessenger discovery campaigns.

RESEARCH CHALLENGE
Matched-filtering searches, the most sensitive gravitational 

wave (GW) detection algorithms used by LIGO, currently target 

a 3D parameter [1]. Extending these template-matching searches 
to target the 9D parameter space available to GW detectors is 
computationally prohibitive [2]. To address these limitations, we 
pioneered the use of GPU-accelerated deep learning algorithms 
[3]. Our technique, Deep Filtering, employs a system of two deep 
convolution neural networks (CNNs) that directly take time-series 
inputs for both classification and regression. 

In our foundational article [3], we showed that CNNs can 
outperform traditional machine learning methods, reaching 
sensitivities comparable to matched-filtering for directly 
processing highly noisy time-series data streams to detect weak 
GW signals and estimate the parameters of their source in real 
time, using GW signals injected into simulated LIGO noise. 

Deep Filtering demonstrated, for the first time, that machine 
learning can successfully detect and recover true parameters of 
real GW signals observed by LIGO, and achieve performance 
comparable to matched-filtering methods while being several 
orders of magnitude faster and far more resilient to transient 
noise artifacts, such as glitches. Furthermore, we showed that 
after a single training process, Deep Filtering can automatically 
generalize to noise having new Power Spectral Densities from 
different LIGO events without retraining.

Figure 1: The curve shows the sensitivity of detecting GW signals injected in real 
LIGO noise from our test set using Deep Filtering and with matched-filtering with 
the same template bank used for training. These results imply that deep learning is 
capable of detecting signals significantly weaker than the background noise.
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METHODS & CODES
The training set contained about 2,500 waveform templates, 

generated with the open source EOB model [4], with black hole 
component masses between 5 and 75 solar masses sampled in steps 
of 1 solar mass. The input duration was fixed at 1 second, with 
a sampling rate of 8,192 Hz. The testing dataset also contained 
approximately 2,500 templates with intermediate component 
masses.

We produced copies of each signal by shifting the location 
of their peaks randomly within the final 0.2 seconds to make 
the CNNs more resilient to time translations. We obtained real 
LIGO data from the LIGO Open Science Center (LOSC) around 
the first three GW events; namely, GW150914, LVT151012, and 
GW151226. Each event contained 4,096 seconds of real data from 
each detector. We used noise sampled from GW151226 and 
LVT151012 for training and validation of our model and noise 
from GW150914 for testing. 

We superimposed different realizations of noise randomly 
sampled from the training set of real LIGO noise from the two 
events GW151226 and LVT151012 and injected signals over 
multiple iterations, thus amplifying the size of the training datasets. 
The power of the noise was adjusted according to the desired 
optimal matched-filter signal-to-noise ratio (SNR) for each training 
round. The inputs were then whitened with the average Power 
Spectral Densities of the real noise measured at that time period. 

We also scaled and mixed different samples of LIGO noise 
together to artificially produce more training data, and we also 
added various levels of Gaussian noise to augment the training 
process. However, the testing results were measured using only 
pure LIGO noise not used in training with true GW signals or 
with signals injected from the unaltered test sets.

We used the Wolfram Language neural network functionality, 
built using the open-source MXNet framework, that uses the 
cuDNN library for accelerating the training on NVIDIA GPUs. 
The learning algorithm was ADAM, and other details were the 
same as before [3]. While training, we used the curriculum learning 
strategy in our first article [3] to improve the performance and 
reduce training times of the CNNs while retaining performance 
at very high SNRs.

RESULTS & IMPACT
This research has shown for the very first time (Figs. 1 and 2) that 

CNNs can be used for both detection and parameter estimation 
of GW signals in raw LIGO data [5]. The intrinsic scalability of 
deep learning can enable fast, automated GW searches covering 
millions or billions of templates over the full range of parameter-
space that is beyond the reach of existing algorithms. Extending 
Deep Filtering to predict any number of parameters such as spins, 
eccentricities, etc., or additional classes of signals or noise is as 
simple as adding an additional neuron for each new parameter, or 
class, to the final layer and training with noisy waveforms with the 
corresponding labels. Furthermore, the input dimensions of the 

CNNs can be enlarged to take time-series inputs from multiple 
detectors, thus allowing coherent searches and measurements of 
parameters such as sky locations. 

The average time taken for evaluating each of our CNNs 
per second of data is approximately 85 milliseconds and 540 
microseconds using a single CPU core and GPU, respectively, 
thus enabling analysis even faster than in real time.

WHY BLUE WATERS
Blue Waters played a critical role in creating the numerical 

relativity waveforms used to train and test deep learning algorithms. 
In recent developments, Blue Waters has provided the required 
scale and computational power to construct deep neural networks 
using distributed learning inolving over 1,024 GPUs.
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Figure 2: Mean percentage absolute error of estimating masses on testing signals at 
each SNR, injected in real LIGO noise from events not used for training, compared 
to matched-filtering using the same template bank that was used for training. Deep 
learning can interpolate to test set signals with intermediate parameter values.
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