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EXECUTIVE SUMMARY
Dynamical systems are used to describe the rich and complex 

evolution of many real-world processes. Modeling the dynamics 
of physical, engineering, and biological systems is thus of great 
importance in their analysis, design, and control. For systems with 
existing models based on first principles, high-fidelity solutions 
are possible through direct numerical simulations. However, these 
generally yield sets of equations with approximately 106–9 degrees 
of freedom. Even with recent advances in computational power, 
solving these high-fidelity models is computationally intractable 
for multiquery and time-critical applications such as design 
optimization, uncertainty quantification, and model predictive 
control. Moreover, some systems may have an abundance of data 
but could lack the governing laws necessary for accurate modeling. 
Motivated by this problem, we seek to develop deep learning-based 
model-reduction approaches, wherein both the identification and 
evolution of low-dimensional features are learned from numerical 
and experimental data sets.

RESEARCH CHALLENGE
In recent years, the rise of machine learning and big data have 

driven a shift in the way complex spatiotemporal systems are 
modeled. The abundance of data has facilitated the construction 
of so-called data-driven models of systems lacking high-fidelity 
governing laws. In areas where high-fidelity models do exist, data-
driven methods have become an increasingly popular approach 
to tackle previously challenging problems wherein solutions are 
learned from physical or numerical data [1].

In model reduction, machine learning strategies have 
recently been applied to many remaining challenges, including 
learning stabilizing closure terms in unstable proper orthogonal 
decomposition (POD)–Galerkin models and data-driven model 
identification for truncated generalized POD coordinates [2,3]. 
A more recent approach considers learning a set of observable 
functions spanning a Koopman invariant subspace from which 
low-order linear dynamics of nonlinear systems are modeled [4]. 
While many of these approaches show great promise, a number 
of significant issues remain. Notably, the issue of scalability arises 
when considering training deep neural networks on large-scale 
simulation data.

To avoid this curse of dimensionality, we instead propose a 
deep learning method that combines important innovations in 
dimensionality reduction and arbitrary dynamics modeling to 
perform robust deep learning-based model reduction. First, a deep 
neural network architecture called a convolutional autoencoder 
(Fig. 1a) is used to learn low-dimensional, abstract features of 
the high-dimensional input data. A modified version of a long 
short-term memory (LSTM) recurrent neural network (Fig. 1b) 
is then used to learn the a priori unknown dynamics of these 
features. Both networks are trained jointly in an end-to-end 
fashion, resulting in a completely data-driven model that offers 
significant advantages over both linear model reduction strategies 
and vanilla implementations of neural-network-based model-
reduction approaches.

METHODS & CODES
The model proposed in this work consists of a four-layer strided 

convolutional encoder network followed by a two-layer dense 
encoder network, both of which learn at each layer a lower-
dimensional abstract representation of the input data. This results 
in a low-dimensional feature vector, h∈ℝk, which can be thought of 
as a nonlinear, location-invariant generalization of the generalized 
POD coordinates. To efficiently evolve these features, the LSTM 
network is designed to scale with the reduced dimension, relying 
only on the current state to make a future state prediction. Both 
the LSTM and encoder networks use the decoder network, which 
consists of a two-layer dense network followed by a four-layer 
strided convolutional transposed network, to reconstruct the full 
state from the low-dimensional feature vector. 

The code used in this project is written in Python using 
TensorFlow, Google’s open source library for building, training, 
and serving deep neural network models, which utilizes the CUDA 
CuDNN deep learning library for acceleration with NVIDIA GPUs 
[5]. The model is trained using ADAM, a variant of stochastic 
gradient descent.

RESULTS & IMPACT
We trained our deep convolutional recurrent autoencoder 

model on a number of illustrative examples. Here, we restrict 
our attention to the problem of a statistically stationary lid-driven 
cavity flow at a high Reynolds number. In particular, the Navier–

Figure 1: (a) The deep convolutional autoencoder model proposed in this work. In this model, a 2D input snapshot is fed on the left and is processed down to a low-
dimensional state (or feature vector). (b) The long short-term memory (LSTM) then evolves this feature vector, where the full state is reconstructed with the decoder 
portion of the convolutional autoencoder.

Figure 2: Evolution of the model output feature-scaled streamfunction fluctuations 
(top row), its corresponding u-velocity field (middle row), and vorticity field (bottom 
row) at three different stages during training: (a) no training, (b) after 7,000 training 
steps, and (c) after 600,000 training steps. The exact solutions are shown in (e).
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Stokes equations in streamfunction–vorticity formulation are 
discretized in space using Chebyshev polynomials and integrated 
in time using a semi-implicit second order scheme at a Reynolds 
number of Re=2.5×104. At such high Reynolds numbers, this flow 
exhibits complex spatiotemporal behavior and serves as a well-
known benchmark for validation of reduced-order models.  

Next, we assembled a data set of finite-time solution snapshot 
sequences where each snapshot consists of feature-scaled 
streamfunction fluctuations around the temporal mean. At 
every step in the training procedure, every individual snapshot 
is reduced to a low-dimensional feature vector and reconstructed, 

and the evolution of the feature vector is compared against the 
current optimal compression. Fig. 2 compares final evolved output 
feature-scaled streamfunction fluctuations and the corresponding 
u-velocity and vorticity fields at three different stages during 
training using a feature vector h∈ℝk, with k=8. With no training, 
the model simply outputs noise from the random initialization of 
the model parameters. At 7,000 training steps, the model begins 
to learn the evolution of the system, and by 600,000 training steps 
the model nearly captures the exact solution. 

In this work, we have successfully demonstrated the feasibility of 
using deep neural network architectures for learning and evolving 
low-dimensional features of high-dimensional systems through 
the example of a high-Reynolds-number lid-driven cavity flow. 
The incorporation of machine and deep learning strategies for 
constructing smarter and more efficient reduced-order models 
is still a nascent field, but it is one that could have a significant 
impact on areas ranging from design optimization, uncertainty 
quantification, and model predictive control. To this end, we are 
pursuing a number of different directions including incorporating 
physics-based constraints to learning low-order dynamics, and 
learning low-order feature dynamics from heterogeneous data sets.

WHY BLUE WATERS
Training deep neural network models is an inherently data-

intensive process. With larger simulations and more sophisticated 
sensors, there is no shortage of data from which deep learning 
models of physical systems can be trained. The petascale resources 
available via Blue Waters, and in particular its large number of 
GPU-equipped nodes and fast shared parallel storage, have made 
developing and training deep neural network-based reduced-order 
models possible.
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