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Altogether, one decade of Blue Waters

A rewarding ride, nervy at times, but many thanks to BW staff:
o First PRAC grant from NSF in 2009; Access to machine since 2012
@ High-resolution simulations allowed us to address difficult questions

@ Learned some lessons, but perhaps that is how science is done (?)
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Turbulence and High-Performance Computing

Disorderly fluctuations over a wide range of scales
@ Pervasive in many branches of science and engineering
@ Reynolds number: a measure of the range of scales

@ Numerical simulation often best source for detailed information

A Grand Challenge problem in computing
@ Flow is 3D: domain decomposition, and communication-intensive

@ Every step-up in problem size: 8X in number of grid points

Some notable references in the field:
e Kaneda et al. PoF 2003: 40963, on Earth Simulator
o Yeung, Zhai & Sreenivasan PNAS 2015: 81923, on Blue Waters
o Ishihara et al. PRF 2016: 122883, on K Computer
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What Blue Waters Has Enabled (Not Over Yet!)

Forced isotropic turbulence, R\ up to 1300; various resolutions

o Largest production run at 81923, using 262,144 parallel processes
o Some shorter (yet arduous) runs at 122883 and 163843 (4 trillion)

@ Hundreds of millions of core hours, 2.5 PB Nearline storage

Topics and Publications (to date):

o Extreme events (Y, Zhai & Sreenivasan PNAS 2015)

Velocity increments and similarity (lyer, S & Y, PRE 2015, 2017)
Nested OpenMP for low-diffusivity mixing (Clay, et al. CPC 2017)
Highly scalable particle tracking (Buaria & Y, CPC 2017)
Resolution and extreme events (Y, S & Pope, PRF 2018)

A few more since after BW Symposium of 2018
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Turbulence and Pseudo-Spectral Methods

@ 3D Navier-Stokes eqs. (conservation of mass and momentum)

ou/ot + (u-Viu=—-V(p/p) + vV2u +f (1)

@ Periodic domain: u(x, t) = >, G(k, t) exp(¢k- x) in a discrete Fourier
representation. In wavenumber space, 1 | k and evolves by

00/t = —V-(uu) | — vk +f 2)

@ Pseudo-spectral: nonlinear terms formed in physical space,
transformed back and forth in O(N3In, ) operations on N3 grid
(avoiding convolution integral, whose cost would be oc N°)

@ 3D FFT: wide relevance spanning many domain science specialties

o Parallel computing: first decision is how to divide up the domain.
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Massive (Distributed) Parallelism for 3D FFTs

@ 2D domain decomposition allows up to N? MPI processes

@ row and column communicators: P, X P. 2D processor grid

i) 73
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FFT —— |P? P2 p3 | FFT
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FFT —— |F° > PO p1 | FFT
) FFT | FFT

3
1 FFT(1) — Transpose — FFT(2) — Transpose — FFT(3)

@ FFTs taken 1 direction at a time (complete lines of data needed)
@ Transpose (re-distribution of data) via all-to-all communication

@ Local packing and unpacking needed for non-contiguous messages

Communication-intensive nature is main barrier to scalability,
especially at large core counts
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Communication and Contention

How to make the code communicate more efficiently?
@ Reduce communication overhead via fewer MPI processes.
(May not necessarily lead to reduction in overall wall time.)
@ Non-blocking all-to-all, overlap w/ OpenMP computation
(May not be effective if communication-to-computation ratio is high)
@ Remote memory addressing (Fortran Co-Arrays, Cray Compiler)

> declare major buffers as co-arrays, accessible to other processes
» one-sided “get” operation for pairwise exchange
» copy of data between regular and co-arrays

(Thanks to R.A. Fiedler for co-array all-to-all implementation)

Performance degradation due to contention with other jobs

@ Best performance was obtained when running on a reserved partition
designed to minimize contention from network traffic

o Likewise, much helped by Topologically Aware Scheduling (TAS)
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Impact of Network Topology / Reservation

@ 262144 MPI tasks, Fortran co-arrays, single-prec, RK2
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@ Best timing was 8.897 secs/step; with other traffic minimized
@ 1/0 on Blue Waters is good: 40 secs to write 81923 checkpoint
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Particle tracking

@ Study of turbulent dispersion (pollutants, soot, bioterrorism, etc)

@ Fluid particles (w/o inertia, diffusion): u™(t) = u(x™,t)
— interpolate for particle velocity based on instantaneous position

o Cubic spline interpolation (Yeung & Pope, JCP 1988): (N + 3)3
spline coefficients computed in manner analogous to 3D FFT, also
distributed among the MPI processes.

@ Hundreds of millions of fluid particles (Buaria & Yeung, CPC 2017):

> A given MPI task always tracking the same particles, or

» Dynamic mapping between MPI tasks and particles determined by
instantaneous positions, minimizing communication cost

» Communication of spline coefficients for particles close to sub-domain
boundaries implemented efficiently using Fortran Co-Arrays
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Scalability of new particle tracking algorithm

Time to compute (N + 3)3 spline
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@ Splines scale like 3D FFTs, despite some load imbalance due to N + 3
@ Interpolation time actually scales better at larger N

» computation scales as N,/P (particles evenly distributed in domain)
» communication depends on no. of particles located within 2 grid

decomposition this also scales as N,/P

Yeung
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spacings of a sub-domain boundary. For 81923 with 32 x 8192 domain
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Multi-particle clusters and post-processing

Some physical questions (beyond the simplest):
How is a particle trajectory affected by local flow conditions in space?
Relative dispersion: How quickly can a pair of particles move apart?

Mixing: How quickly can a pair of particles come together?

Shape distortion: What happens to a collection of 3 or 4 particles as
they move? Is there a preferred shape, even if size keeps growing?

“Backward tracking” via post-processing

@ N-S equations are irreversible in time. To learn about past history,
need to have stored a lot of data at earlier times

e N, particles, and O(le) possible pairs: trace back their trajectories,
mostly on pairs close together at “final time" of simulation

o Four-particle tetrads: careful, selective sampling even more important:
cannot deal with N;J1 when N, is many millions!
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he Study of Extreme Events

Local deformation of a fluid element involves changes in shape and
orientiation, due to intense velocity gradients

@ Fluctuations of dissipation rate (strain rates squared) also pivotal to
intermittency in turbulence theory

o Extreme events: samples of > O(10%) times mean value seen in DNS.
But sensitive to resolution in both space and time (and statistics)

Local averages (in 3D) of dissipation rate
1
er(x,t) = o /\/o/ e(x+r,t) dr

@ Rarely reported in the past; 1D averages can be misleading

@ Intermediate range of r is most important
— and less sensitive to numerics
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Local Averaging of a Highly Intermittent Signal

[K.P. lyer et al, APS-DFD 2018, with help from R. Sisneros (NCSA)]

Locally averaged slices of dissipation at r/Ax = 1,2,4,8, ..., taken from a
single 163843 DNS snapshot. Left to Right: from wrinkled to smooth.
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A Summary of our Blue Waters Experience

Advances in domain science (turbulence) using up to 8192 BW nodes

o First full-length 81923 DNS (and much shorter 163843),
w/ attention to extreme events and spatial resolution

@ Highest Reynolds number DNS for turbulent dispersion

@ Dual-resolution simulations of high Schmidt number mixing

Algorithmic challenges faced and innovations achieved
@ Fortran co-arrays for 256K MPI tasks alltoall (further helped by TAS)
@ Ideas applied to massive particle tracking (CPC 2017)
@ Nested OpenMP on Cray XE6; OMP 4.5 on XK7 (CPC 2017, 2018)

Data Management (on NCSA Nearline system)
@ Learned lessons about handling of a large number of “small” files

@ Some 2.5 PB. Off-site transfer in progress. Data compression desired
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Future Goals: Still Thirsty for More Computing Power

Increase in grid resolution: 122883, 163843, dreaming of 327683
@ Need exascale, but also constantly adapt to new architectures

e Communicate faster, and/or overlap with other operations?

Larger simulation can be used for many different purposes
@ A wider range of scales (higher Reynolds & Schmidt numbers)
@ Resolving small scales better, or a larger domain size

@ Longer simulations, more time steps

Interest in other phenomena (generalize egs of motion), such as:
@ Buoyancy effects due to temperature and salinity in the ocean

e Magpnetic fields: one-way coupling (liquid metal applications) or
two-way coupling (Maxwell equations, astrophysics)

@ Couplings among body forces: rotation, buoyancy, electromagnetic
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