Simulation of Bluff-Body Stabilized Flames with PeleC, an Exascale Combustion Code

Samuel H.R. Whitman¹, James G. Brasseur², and Peter E. Hamlington¹

¹ Department of Mechanical Engineering, University of Colorado, Boulder, CO ² Department of Aerospace Engineering, University of Colorado, Boulder, CO

Blue Waters Symposium

BLUE WATERS

Problem Overview

In many high-speed systems, maintaining stable combustion is a challenge

Campbell & Chambers (1994)

Problem Overview

In many high-speed systems, maintaining stable combustion is a challenge

We can use the flow dynamics of recirculation zones for stabilization

Campbell & Chambers (1994)

Problem Overview

In many high-speed systems, maintaining stable combustion is a challenge

We can use the flow dynamics of recirculation zones for stabilization

Accurately capturing the physics of these zones with low-resolution codes is an ongoing challenge

Campbell & Chambers (1994)

Campbell & Chambers (1994)

In many high-speed systems, maintaining stable combustion is a challenge

We can use the flow dynamics of recirculation zones for stabilization

Accurately capturing the physics of these zones with low-resolution codes is an ongoing challenge

We use Blue Waters to perform highresolution simulations

Turbulent Combustion Dynamics

Shanbhogue, Husain, Lieuwen (PECS, 2009)

The Air Force Research Laboratory Case

Paxton et al. (AIAA, 2019)

- Flame stabilization by bluff bodies goes back to the first half of the 20th century
- The AFRL experiments are currently ongoing
- Matching computational and experimental results remains a challenge

Problem Overview: The AFRL Case

Methane flame stabilized on a circular rod, Zukoski (1954)

 Where can simulations realistically compare against experimental data?

- A common computational shortcut is to use a smaller spanwise domain with periodic boundary conditions in that direction
- There is very little in the literature on aspect ratio and spanwise boundary effects for these cases

PeleC

Exascale Combustion Code

- Developed at LBNL, NREL, and ANL for performance on current and future supercomputers
- Direct Numerical Simulations (DNS) of turbulencechemistry interactions in conditions relevant to practical combustion devices
- Embedded Boundary (EB) capability for modeling device structure
- Adaptive Mesh Refinement (AMR) built on the AMReX framework

(https://amrex-codes.github.io)

PeleC: Built on AMReX

Block-Structured AMR

- Increase efficiency by focusing on dynamically important regions
- For the cold flow we refine on cut cells (the bluff body) and vorticity magnitude.
- For reacting cases we are currently also refining on intermediate species
- We see orders of magnitude speedup over static refinement

(https://amrex-codes.github.io)

Non-Reacting Convergence:

Intent:

- Study effects of AMR on convergence of bluff-body flow simulation: "how much refinement do we need?"
- Understand effects of varying aspect ratio: "how wide a domain do we need?"

Cases:

Aspect Ratio

Non-Reacting Convergence:

Computational Cost:

- Cheapest: run on 4 nodes, ~100 node-hours
- Most expensive: run on 80 nodes, ~20,000 node-hours.
- Good weak scaling in this range on Blue Waters.
- Scaling is limited by AMR refinement level and criteria

Cases:

Aspect Ratio

AMR In Action

Increasing AMR Levels and Local Resolution

Increasing AMR Levels and Local Resolution

Time-Averaged Velocity Fields

AMR Resolution and Convergence: X-Velocity Statistics

- X-velocity normalized by inflow bulk velocity U₀
- Aspect ratio of 2
- Plots show:
 - PDF from recirculation zone
 - Mean x-velocity
 - Standard deviation
 - Skewness

Aspect Ratio Comparison

Aspect Ratio: X-Velocity Statistics

- X-velocity normalized by inflow bulk velocity U₀
- 3 AMR levels
- Plots show:
 - PDF from recirculation zone
 - Mean x-velocity
 - Standard deviation
 - Skewness

Work in Progress: Reactions

- Isothermal bluff body heated to 600K
- Premixed H2-air, inflow at 310K
- Hot spot is forming and intermediate species are produced
- Combustion has been unstable

Summary

- AMR is accurately capturing the physics of interest, providing highresolution simulations at reduced cost compared with static refinement
- 3 levels of AMR are resolving the large-scale dynamics relevant to maintaining combustion
- Observed differences between full and reduced aspect-ratio domains are minimal
- Combustion in simulations with embedded boundaries and AMR is a work in progress and the current focus.

Acknowledgements

BLUE WATERS

This research is funded by a Blue Waters Graduate Fellowship. This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.

Citations

- Campbell, J.F. and Chambers, J.R., 1994. Patterns in the sky: natural visualization of aircraft flow fields.
- Shanbhogue, S.J., Husain, S. and Lieuwen, T., 2009. Lean blowoff of bluff body stabilized flames: Scaling and dynamics. *Progress in Energy and Combustion Science*, *35*(1), pp.98-120.
- Paxton, B.T., Fugger, C.A., Rankin, B.A. and Caswell, A.W., 2019. Development and Characterization of an Experimental Arrangement for Studying Bluff-Body-Stabilized Turbulent Premixed Propane-Air Flames. In AIAA Scitech 2019 Forum (p. 0118).
- Zukoski, Edward Edom, 1954. Flame stabilization on bluff bodies at low and intermediate reynolds numbers. PhD thesis, California Institute of Technology.

Questions?

