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“Nothing in biology makes sense except in the
light of evolution”

— Theodosius Dobzhansky, 1973 essay in the
American Biology Teacher, vol. 35, pp 125-129

...... nothing in evolution makes sense except
in the light of phylogeny ...”

— Society of Systematic Biologists,
http://systbio.org/teachevolution.html/



http://systbio.org/teachevolution.html

Phylogenomics
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Phylogeny + genomics = genome-scale phylogeny estimation



| use Blue Waters to:

* Design and test algorithms for core problems
in phylogenomics and its applications



This Talk

 Genome-scale species tree estimation

— The pipeline: Statistical estimation and NP-hard
optimization problems

— Incomplete lineage sorting and species tree estimation
under the Multi-Species Coalescent model (MSC)

— Statistically consistent methods (ASTRAL and ASTRID)

— NJMerge and TreeMerge: scaling species tree methods to
large datasets

e Discussion and Future directions



DNA Sequence Evolution (Idealized)
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Phylogeny Problem
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Markov Models of Sequence Evolution

The different sites are assumed to evolve i.i.d. down the model tree
(with rates that are drawn from a gamma distribution).



Markov Models of Sequence Evolution

The different sites are assumed to evolve i.i.d. down the model tree
(with rates that are drawn from a gamma distribution).

Simplest site evolution model (Jukes-Cantor, 1969):

« The model tree T is binary and has substitution probabilities p(e) on each edge e,
with O<p(e)<3/A4.

 The state at the root is randomly drawn from {A,C,T,G} (nucleotides)

* |f asite (position) changes on an edge, it changes with equal probability to each
of the remaining states.

 The evolutionary process is Markovian.

More complex models (such as the General Markov model) are also considered,
often with little change to the theory.



Phylogeny Problem
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S, S, s3 s4 "ss

TRUE TREE

FN: false negative
(missing edge)

FP: false positive
(incorrect edge)

St ACAATTAGAAC
S» ACCCTTAGAAC
S3 ACCATTCCAAC
Sy ACCAGACCAAC

Ss ACCAGACCGGA

509% error rate

DNA SEQUENCES

INFERRED TREE




Statistical Consistency/ldentifiability
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Data



Questions

Is the model tree identifiable?

Which estimation methods are statistically
consistent under this model?

How much data does the method need to
estimate the model tree correctly (with high
probability)?

What are the computational issues?



Answers?

We know a lot about which site evolution models are
identifiable, and which methods are statistically consistent.

We know a little bit about the sequence length requirements
for standard methods.

The best methods (typically maximum likelihood or Bayesian
estimation) are very computationally intensive.



Computational issues

 Maximum likelihood: NP-hard, and tree-space grows
exponentially with the number of leaves

* Bayesian estimation: need to run to convergence
(may fail)

* Parallelism helps but is not enough

Take home message: large datasets are beyond the

capability of current methods (perhaps even with Blue
Waters)



Genome-scale data?

error

Data



Phylogenomics
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Gene tree discordance

D < Incomplete Lineage Sorting
Y ' TR ‘:"'.“‘5} P, (ILS) is a dominant cause of
FRAFO TR - GBI gene tree heterogeneity

| gene1000j
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Gene trees inside the species tree
(Coalescent Process)
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Gorilla and Orangutan are not siblings in the species tree,

but they are in the gene tree.




Gene trees inside the species tree
(Coalescent Process)

Deep coalescence =
INCOMPLETE

LINEAGE

SORTING (ILS):

gene tree can be different
from the species tree

Past

Present

Courtesy James Degnan

Gorilla and Orangutan are not siblings in the species tree,
but they are in the gene tree.




1KP: Thousand Transcriptome
Project

&

G. Ka-Shu Wong J. Leebens-Mack N. Wickett N. Matasci T. Warngw, S. Mirargb, N. Nguyen
U Alberta U Georgia Northwestern iPlant UT-Austin UT-Austin UT-Austin

e 103 plant transcriptomes, 400-800 single copy “genes”
o Next phase will be much bigger
e Wickett, Mirarab et al., PNAS 2014

Major Challenge:
* Massive gene tree heterogeneity consistent with ILS




Avian Phylogenomics Project 7

\

Erich Jarvis, MTP Gilbert, Guojie Zhang, Siavash Mirarab, Tandy Warnow,
HHMI Copenhagen BGI Texas Texas and UIUC

* Approx. 50 species, whole genomes

* 14,000 loci

* Multi-national team (100+ investigators)

8 papers published in special issue of Science 2014

Major challenge:
 Massive gene tree heterogeneity consistent with ILS.




Species tree

Gorilla Human  Chimp Orangutan
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Sequence evolution model

¢ Sequence data l ¢ Sequence data ¢
(Alignments) (Alignments)

ACTGCACACCG CTGAGCATCG 1 AGCAGCATCGTG CAGGCACGCACGAA

ACTGC-CCCCG CTGAGC-TCG AGCAGC-TCGTG AGC-CACGC-CATA

AATGC-CCCCG ATGAGC-TC- AGCAGC-TC-TG ATGGCACGC-C-TA

-CTGCACACGG CTGA-CAC-G C-TA-CACGGTG AGCTAC-CACGGAT



Big picture challenge

 Multi-locus data, generated by a hierarchical
model

— Species tree generates gene trees
— Gene trees generate sequences

* How can we estimate the species tree from
the sequence data?



Traditional approach: concatenation

SRR AT SRR : Orangutan Chimpanzee

supermatrix

: gene1 igene2 : : gene1000 : __[uiVeeEl —5

ACTGCACACCGCTGAGCATCG CAGAGCACGCACGAA inference

ACTGC~CCCCGCTGAGC~TCG AGCA~CACGC~CATA

AATGC-CCCCGATGAGC-TC~ * * * * ATGAGCACGC~-C-TA

-CTGCACACGGCTGA~CAC~-G AGC-TAC~-CACGGAT Go ri | |a Human
 Statistically inconsistent and can even -

rror

be positively misleading (proved for A

unpartitioned maximum likelihood)
[Roch and Steel, Theo. Pop. Gen., 2014]

* Mixed accuracy in simulations

[Kubatko and Degnan, Systematic Biology, 2007]

[Mirarab, et al., Systematic Biology, 2014] Data



Statistically consistent methods

* Coalescent-based summary methods: Estimate
gene trees, and then combine together (ASTRAL,
ASTRID, MP-EST, NJst, and others)

* Co-estimation methods: Co-estimate gene trees
and species trees (TOO EXPENSIVE)

e Site-based methods: estimate the species tree
from the concatenated alignment, and do not
estimate gene trees (NOT WELL STUDIED)



Main competing approaches

gene1 qgene?2 ... genek
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Species tree
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Species tree
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Gorilla Human  Chimp Orangutan

Gene tree Gene tree Gene tree Gene tree
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ASTRAL

[Mirarab, et al., ECCB/Bioinformatics, 2014]

e Optimization Problem (NP-Hard):

Find the species tree with the maximum number of induced

quartet trees shared with the collection of input gene trees

Set of quartet trees
induced by T

a gene tree .
all input gene trees

« Theorem: Statistically consistent under the multi-
species coalescent model when solved exactly

15



ASTRAL

e Statistically consistent under the MSC, and
runs in polynomial time

* Solves constrained version of the NP-hard
Maximum Quartet Support problem using
dynamic programming
— Input: Gene trees and set X of allowed bipartitions

— Output: Species tree T that maximizes the quartet

support criterion, subject to drawing its
bipartitions from the set X



ASTRAL on biological datasets

1KP: 103 plant species, 400-800 genes

Yang, et al. 96 Caryophyllales species, 1122
genes

Dentinger, et al. 39 mushroom species, 208
genes

Giarla and Esselstyn. 19 Philippine shrew
species, 1112 genes

Laumer, et al. 40 flatworm species, 516 genes
Grover, et al. 8 cotton species, 52 genes

Hosner, Braun, and Kimball. 28 quail species,
11 genes

Simmons and Gatesy. 47 angiosperm
species, 310 genes

Prum et al, 198 avian species, 259 genes

Dissecting Molecular Evolution in the Highly Diverse Plant
Clade Caryophyllales Using Transcriptome Sequencing

s
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Phylogenomics of Philippine Shrews

Nuclear genomic signals of the
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evolutionary innovation
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Re-evaluating the phylogeny of allopolyploid Gossypium L.
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A comprehensive phylogeny of birds (Aves) using
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Running time as function of # species

wes ASTRAL-II
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1000 genes, “medium” levels of ILS, simulated species trees
[Mirarab and Warnow, ISMB, 2015]
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Running time as function of

wes ASTRAL-II
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But ASTRAL can
fail to return a
tree within 24 hrs
on some very large
datasets with

high ILS
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[Mirarab and Warnow, ISMB, 2015]
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Scalability to large datasets

* ASTRAL can fail on some datasets with many
species and genes (constraint space too big)

* Concatenation using Maximum Likelihood
(inconsistent, because it assumes all sites
evolve down the same model tree): attempts
to solve NP-hard optimization problem, and
no current method scales to large numbers of
species and genes



NJMerge

* Molloy and Warnow, RECOMB-CG 2018
e Github site: https://github.com/ekmolloy/njmerge

Algorithmic strategy:

* Divide-and-conquer: divides species set into disjoint
subsets, computes species trees on the subsets using
selected species tree method (e.g., ASTRAL, RAXML,
SVDqguartets), and then merges subset trees using a
distance-based method.


https://github.com/ekmolloy/njmerge

TreeMerge

Molloy and Warnow, to appear, ISMB 2019
Like NJMerge, it is statistically consistent

under the MSC
other statistica

Improves on N.

when used with ASTRAL or
ly consistent methods

Merge:

— guaranteed to never fail

— Asymptotically faster -- O(n?) in divide-and-
conquer pipeline

On github



Divide-and-Conquer Pipeline

Decompose species
set into pairwise
disjoint subsets.

Full

species
set

Build a tree on each

A
species set AAAAA

T |

Compute tree on entire set of species
using “Disjoint Tree Merger” method

Auxiliary
Info

A

(e.g., distance
matrix)




Full

species
set

Auxiliary
Info

(e.g., distance
matrix)

Divide-and-Conquer Pipeline

Decompose species
set into pairwise
disjoint subsets.

species set

T

Algorithm design:
Necessary to explore the

design space to determine
best strategies

Build a tree on each

A
A AA AA

A

Compute tree on entire set of species
using “Disjoint Tree Merger” method
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NJMerge + ASTRAL vs. ASTRAL:
Comparable accuracy and can analyze larger datasets
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NJMerge + RAXML vs. RAXML:
Better accuracy and faster!
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Summary

* Using NJMerge or TreeMerge with ASTRAL: generally as
accurate and faster on large datasets than ASTRAL, and also
statistically consistent under the Multi-Species Coalescent
model

e Using NJMerge or TreeMerge with concatenation using
maximum likelihood (CA-ML): more accurate and much faster,
greater scalability than CA-ML



Summary

* The best tree estimation methods are
computationally intensive, and tree-space grows
exponentially
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Summary

The best tree estimation methods are
computationally intensive, and tree-space grows
exponentially

Statistical consistency is important but not sufficient

Parallel implementations of expensive methods are
nelpful but not enough

Divide-and-conquer improves scalability, maintains
statistical consistency, and can maintain accuracy (or
only lose a small amount)



Summary

The best tree estimation methods are
computationally intensive, and tree-space grows
exponentially

Statistical consistency is important but not sufficient

Parallel implementations of expensive methods are
nelpful but not enough

Divide-and-conquer improves scalability, maintains
statistical consistency, and can maintain accuracy (or
only lose a small amount)

Divide-and-conquer is highly parallelizable



What Blue Waters enabled

* Algorithm design is iterative, and requires
evaluation using multiple variants on many
datasets, each one taking potentially a very
long time

e None of this would be feasible without Blue
Waters

* Future phylogenomics projects will be able to
use the methods developed using Blue Waters
allocations.



Phylogenetic Inference

Genomic data are:
* Heterogeneous
* Large

* Noisy

* Error-ridden

* Streaming

Approaches:

Statistical estimation under stochastic models
NP-hard optimization problems and large datasets
Probabilistic analysis of algorithms

Chordal graph theory

Combinatorial optimization

Graph-theoretic divide-and-conquer
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Accuracy in the presence of HGT + ILS

200 Estimated Gene Trees
=8= Astral s NJst wQMmcC =g= CA-ML

15

10

% RF Error

0.05 0.10 0.50 1 5 10
HGT Rate

Data: Fixed, moderate ILS rate, 50 replicates per HGT rates (1)-(6), 1 model species tree per replicate on 51 taxa, 1000 true gene trees,
simulated 1000 bp gene sequences using INDELible 8, 1000 gene trees estimated from GTR simulated sequences using FastTree-2”

7 Price, Dehal, Arkin 2015
8Fletcher, Yang 2009
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