
OpenMP parallelization of the
complex magnetohydrodynamic

model BATS-R-US
Gábor Tóth

Hongyang Zhou

Department of Climate and Space
Center for Space Environment Modeling

University Of Michigan

Physics
Classical, semi-relativistic and Hall MHD
Multi-species, multi-fluid, 5 and 6-moment
Anisotropic pressure for ions and electrons
Radiation hydrodynamics multigroup diffusion
Multi-material, non-ideal equation of state
Heat conduction, viscosity, resistivity
Alfven wave turbulence and heating

Numerics
Parallel Block-Adaptive Tree Library (BATL)
Cartesian and generalized coordinates
Splitting the magnetic field into B0 + B1
Divergence B control: 8-wave, CT, projection, parabolic/hyperbolic
Numerical fluxes: Godunov, Rusanov, AW, HLLE, HLLC, HLLD, Roe, DW
Explicit, local time stepping, limited time step, sub-cycling
Point-, semi-, part and fully implicit time stepping
Up to 4th order accurate in time and 5th order in space

Applications
Heliosphere, sun, planets, moons, comets, HEDP experiments

250,000+ lines of Fortran 90+ code with MPI parallelization 2

100 101 102 103 104 105 106

Number of cores

106

107

108

109

1010

N
um

be
r o

f c
el

l u
pd

at
es

/s
ec

Parallel scaling from 8 to 262,144 cores on
Cray Jaguar. 40,960 grid cells per core in

10 grid blocks with 16x16x16 cells.

BATS-R-US

3

Challenges

Why OpenMP?
Using pure MPI, replicated data structures (like block tree, large lookup tables…)
cannot fit in memory for very large grid
OpenMP reduces the memory use by using fewer MPI processes, while
maintaining speed via multithreading
Allows the use of smaller blocks and/or scaling to larger number of cores

Hybrid Parallelization Options
Multi-threading for grid cells: fine-grained

Many loops to be parallelized
Significant work is done outside these loops

Multi-threading for grid blocks: coarse-grained
Fewer loops to be parallelized
Most of the work is multi-threaded
Many variables need to be declared thread-private:
module variables, saved variables, initialized variables
Race conditions are very difficult to debug: Intel INSPECTOR

4

Variable declarations and allocations

! Primitive variables extrapolated from left and right
real, allocatable:: LeftState_VX(:,:,:,:), RightState_VX(:,:,:,:)
real, allocatable:: LeftState_VY(:,:,:,:), RightState_VY(:,:,:,:)
real, allocatable:: LeftState_VZ(:,:,:,:), RightState_VZ(:,:,:,:)
!$omp threadprivate(LeftState_VX, RightState_VX)
!$omp threadprivate(LeftState_VY, RightState_VY)
!$omp threadprivate(LeftState_VZ, RightState_VZ)

…
!$omp parallel
allocate(LeftState_VX(nVar,nI+1,nJ,nK), RightState_VX(nVar,nI+1,nJ,nK))
allocate(LeftState_VY(nVar,nI,nJ+1,nK), RightState_VY(nVar,nI,nJ+1,nK))
allocate(LeftState_VZ(nVar,nI,nJ,nK+1), RightState_VZ(nVar,nI,nJ,nK+1))
…
!$omp end parallel

5

Main Loop in Explicit Solver

STAGELOOP: do iStage = 1, nStage
! Multi-block solution update.
!$omp parallel do
do iBlock = 1, nBlock

if(Unused_B(iBlock)) CYCLE
call calc_face_value(iBlock)
call calc_face_flux(iBlock)
call calc_source(iBlock)
call update_state(iBlock)
if(iStage==nStage) call calc_timestep(iBlock)

end do
!$omp end parallel do
call exchange_messages

end do STAGELOOP

6

Message passing: serial

7

Message passing: partially multithreaded

8

Typical Loop in Implicit Solver

n = 0
do iBlock=1,nBlock

do k=1,nK; do j=1,nJ; do i=1,nI; do iVar=1,nVar
n = n + 1
! Set RHS vector
Rhs_I(n) = Res_VCB(iVar,i,j,k,iBlock)*Dt

end do; enddo; enddo; enddo
end do

9

Typical Loop in Implicit Solver

!$omp parallel do private(n)
do iBlock=1,nBlock

n = (iBlock-1)*nI*nJ*nK*nVar
do k=1,nK; do j=1,nJ; do i=1,nI; do iVar=1,nVar

n = n + 1
! Set RHS vector
Rhs_I(n) = Res_VCB(iVar,i,j,k,iBlock)*Dt

end do; enddo; enddo; enddo
end do
!$omp end parallel do

10

Lessons Learned

Code changes were surprisingly minimal
609 OpenMP directive lines (mostly thread-private declarations)
were added to the 246,728 lines of source code: 0.25% change

Most of the time is spent on testing and debugging
Comprehensive BATS-R-US nightly test suite switched to use OpenMP
Intel INSPECTOR was found to be the only tool to identify race conditions
Profiling and scaling studies revealed bottle-necks

Serial performance can be severely affected if code is compiled with OpenMP
NAGFOR is 10 times, pgfortran 3 times, ifort 2 times slower than without OpenMP
gfortran and Cray fortran are not affected significantly

Pinning OpenMP and MPI processes on nodes is non-trivial
Settings change from platform to platform, from compiler to compiler,
even from one version to another version of the same compiler!
Instructions on web pages are often incomplete or obsolete
Check what actually happens with a dedicated C++ code: coreAffinity.cpp

11

Weak scaling on a log-log plot:
explicit scheme

Parallel scaling and maximum problem size
MHD problem on 3D uniform grid: 256 blocks with 8x8x8 cells = 131k cells per core
Gfortran, with optimization, +OpenMP and MPI
Blue Waters: 32 AMD cores per node on 2 processors, 2GB/core memory

12

Weak scaling on a linear plot:
explicit scheme

32 threads up to 512k cores!
~55% of ideal scaling

16 threads up to 256k cores!
~75% of ideal scaling

Pure MPI up
to 16k cores.

13

Weak scaling on a linear plot:
implicit scheme

16 threads up to 256k cores!
~60% of ideal scaling

Pure MPI works up to 16k cores.

BiCGSTAB (uses less memory than GMRES)
with fixed 20 iterations per time step

14

Hardware
Large number of cores on a uniform machine allows studying the code
behavior and scaling for very large problems and finding issues like
integer overflow
Large number of cores per node allows investigating scaling with number
of OpenMP threads

Software
Variety of compilers for testing allows identifying compiler specific issues
Apprentice2 / CPMAT performance tool is easy to use and useful

Environment
Wait time for large jobs is reasonably short, so scaling studies can be
done efficiently

Why Blue Waters?

15

We have succeeded in adding OpenMP parallelization to BATS-R-US
Coarse-grain parallelization: multi-threading per grid-block
Relatively few changes in source code: 0.25%

Testing and debugging takes most time
A few man-month work for changing 250k lines of source code

Maximum problem size achievable is 32 times larger
Weak scaling performance is satisfactory

Up to 512k cores with explicit scheme: 55% of ideal scaling
Up to 256k cores with implicit scheme: 60% of ideal scaling

Compiler and platform specific issues
Some compilers run much slower with OpenMP
Pinning threads is non-trivial

Future work
Running models with and without OpenMP together in the
Space Weather Modeling Framework
Using GPUs…

Summary

