Unraveling functional hole hopping pathways in the [4Fe4S]-containing DNA primase

"Blue Waters has enabled me to develop force field parameters for $[Fe_4S_4]^{2+/3+}$ cluster and EHPath.py."

Darius Teo, Ph.D. candidate Beratan group, Duke University

Emerging roles of Fe-S cluster enzymes in DNA replication and repair

RNA-DNA primer synthesis during DNA replication of the lagging strand

Duke

Perera, R.L., Torella, R., Klinge, S., Kilkenny, M.L., Maman, J.D. and Pellegrini, L., 2013. Elife, 2.

Proposed mechanism of primer handoff driven by DNA charge transfer

Duke

O'Brien, E et al., 2017. Science, 355(6327), p.eaag1789.

DNA-binding, charge transfer-deficient p58C (primase) mutants

How does the mutation affect RNA/DNA-protein binding and charge transfer rates?

Duke

O'Brien, E et al., 2017. Science, 355(6327), p.eaag1789.

<u>Objectives</u>

- 1) Develop AMBER force field parameters for the [4Fe4S] cluster in 2+/3+ state.
 - Broken-symmetry DFT for geometry optimization
 - Generate force constants and RESP charges
 - Validate parameters using MD simulations
- 2) Charge transfer pathway analysis using a hopping program
 - EHPath.py
- 3) Examine binding between primase and RNA/DNA duplex
 - MMPBSA.py

Broken-symmetry method

Duke

Kitagawa, Y. et al., 2018. In Symmetry (Group Theory) and Mathematical Treatment in Chemistry.

Modeling and computational setup

B3LYP/6-31G**, COSMO

PDB 5F0Q

	Charge = -2 S = 9/2	Charge = -1 S = 9/2
	Charge = -1 S = 4	Charge = -1 S = 9/2
Fe-coordinated Cys are included in the treatment	$Fe_{4}S_{4}^{3+}$	$Fe_{4}S_{4}^{2+}$

but not shown here

Duke

6 assignments

3 assignments

Structural comparison of Fe₄S₄³⁺ DFT structures with crystal structure

Structures	RMSD (Å)	
1 ₃₊	0.283	
2 ₃₊	0.278	
3 ₃₊	0.258	
4 ₃₊	0.311	
5 ₃₊	0.279	
6 ₃₊	0.307	

[Fe₄S₄] cluster of primase was likely crystallized in the oxidized state of 3+, as the (aerobic) sitting-drop vapor diffusion protocol was utilized and generated needle-like prisms over 2-4 days.

Duke

Overview of force field parameters

Sources of parameters:

- •Gas-phase QM
- Macroscopic properties via liquid state simulation, e.g., density, heat capacity, compressibility (esp. OPLS)
- Spectroscopic and crystallographic data (small molecules)

All-Atom Force Fields: e.g., CHARMM, AMBER, OPLS, GROMOS

Matt Jacobson, UCSF

Bond and angle force constants

Duke

Seminario, J.M., 1996. *Int. J. Quantum Chem.*, 60(7), pp.1271-1277. Zheng, S. et al., 2016. *J. Chem. Inf. Model.*, 56(4), pp.811-818.

12-6 Lennard-Jones parameters

- Dispersion and short-range repulsion are then combined in the Lennard-Jones formula: A/r¹² – B/r⁶
- LJ parameters are scaled according to formal charges of Fe in the cluster
- i.e., Fe^{2.5+} parameters are derived as the average of the Fe²⁺ and Fe³⁺ parameters

<u>RESP Charges</u>: B3LYP/6-31G* in order for compatibility with ff99SB

Li, P. et al., 2013. JCTC, 9(6), pp.2733-2748.

Li, P. et al., 2014. J. Phys. Chem. B, 119(3), pp.883-895.

Validation of force field parameters for the [4Fe4S]³⁺ cluster

Using 'average' parameters,

Cluster + Protein + DNA

Cluster

EHPath.py

Charge transfer between donor and acceptor

Marcus theory of charge transfer

$$k_{DA} = \frac{2\pi}{\hbar} \langle V_{DA}^2 \rangle \frac{1}{\sqrt{4\pi\lambda_{DA}T}} e^{-\frac{(\Delta G^\circ + \lambda_{DA})^2}{4\lambda_{DA}k_BT}}$$

 V_{DA} - electronic coupling, decays with donor/acceptor distance.

 ΔG° - free energy change of the CT reaction.

 λ_{DA} - reorganization energy, depends on changes of solvation and donor/acceptor geometries upon CT.

Duke

Kinetic model and mean residence time

$$\underbrace{\begin{array}{c}0\\\text{donor}\end{array}}_{k_{1\rightarrow0}} \underbrace{k_{0\rightarrow1}}_{k_{1\rightarrow0}} \underbrace{1} \cdots \underbrace{N}^{k_{N\rightarrow N+1}} \underbrace{N+1}_{\text{acceptor}} \underbrace{\text{cell}}_{\text{drain'}}$$

$$\tau = \sum_{n=0}^{N} \tau_n = \sum_{n=0}^{N-1} \frac{1}{k_{n \to n+1}} \left(\sum_{j=0}^{N-n-1} \prod_{i=n+1}^{N-j} \frac{k_{i \to i-1}}{k_{i \to i+1}} + 1 \right) + \frac{1}{k_{N \to N+1}}$$

 $\tau_{approx} \cong \sum_{n=0}^{N} \frac{1}{k_{n \to n+1}}$

Duke

Teo, R. D. et. al, 2019. Chem, 5(1), pp.122-137.

Pathway analysis in wild-type p58c-DNA/RNA using EHPath.py

Duke

MMPBSA.py

Miller III, B.R. et. al. *JCTC*, *8*(9), pp.3314-3321.

Free energy calculations using MMPBSA.py

$$\Delta G_{\text{solvated}} \cong \langle E_{\text{gas}} \rangle + \langle \Delta G_{\text{solvation}} \rangle - T \langle S_{\text{solute}} \rangle$$

$$\Delta G_{\text{binding,solvated}} = \Delta G_{\text{complex, solvated}} - [\Delta G_{\text{receptor, solvated}} + \Delta G_{\text{ligand,solvated}}]$$

$$= \frac{1}{N} \sum_{i=1}^{N} E_{i,\text{gas}} + \frac{1}{N} \sum_{i=1}^{N} \Delta G_{i,\text{solvation}} - \frac{T}{N} \sum_{i=1}^{N} S_{i,\text{solute}}$$

- E_{gas} molecular mechanical energies (bonded, electrostatic, VDW)
- $\Delta G_{solvation}$ polar (implicit solvent models) and non-polar
- S_{solute} vibrational contribution calculated by normal mode analysis or quasi-harmonic approximation
- Single trajectory protocol (STP)

[4Fe4S]³⁺-DNA/RNA binding free energy (MM/PBSA)

Energy Component	Differences (Complex – F Average	Receptor – Ligand): Std. Dev.	Std. Err. of Mean
VDWAALS	-120.9776	8.1879	1.1465
EEL	-3093.7918	82.3014	11.5245
EPB	3078.1227	80.0224	11.2054
ENPOLAR	-12.2814	0.5799	0.0812
EDISPER	0.0000	0.0000	0.0000
DELTA G gas	-3214.7693	82.0505	11.4894
DELTA G solv	3065.8414	79.9099	11.1896
DELTA TOTAL	-148.9280	9.9197	1.3890
Using Quasi-ha	armonic Entropy Approxima	tion: DELTA G bindi	ng = -7.8911

Duke

<u>Acknowledgements</u>

- Professor David Beratan
- Professor Agostino Migliore
- Dr. Victor Anisimov
- Beratan group
- Dr. Tomasz Janowski
- Tom Milledge
- Blue Waters and NCSA staff

Thank you for your attention!