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We are Missing Something Important!
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We are Missing Something Important!

(McNamara et al.

YES: typical disks are tilted
No: we do not understand them (yet)
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Tilted Disks are Hot J—

® Thick disks precess due to general = ASEEEEEENEA.._ _1... g

relativistic frame dragging by BH spin
(Fragile et al. 2005, 2007, Teixeira 2014)



Tilted Disks are Hot&. ...

~

® Thick disks precess due to general = ASEEEEEENEA.._ _1...

relativistic frame dragging by BH spin
(Fragile et al. 2005, 2007, Teixeira 2014)

® Thin disks can align due to
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Tilted Disks are Hot

® Thick disks precess due to general

relativistic frame dragging by BH spin
(Fragile et al. 2005, 2007, Teixeira 2014)
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® Thin disks can align due to
Bardeen-Petterson (1975) effect

® Seen only in pseudo-Newtonian

simulations, not in GR
(Nixon et al. 2012; Nealon et al. 2015)

® Do thin disks align in GR? Do they form jets?

® Challenge: enormous dynamical range.
Need to resolve thin disk over long run times:

e prohibitive cost  (h/r)>5
® very long accretion time: t = 4X105rg/c (a/0.1)1 (30h/7)2 (1r/107g)L5
® How could one possibly pull this off??!

® approximately include frame-dragging effect, evolve for 1% of accretion time
(Sorathia+13a,b, Hawley & Krolik 15, 18,19)

® is it even possible to attack the full problem?
® this would require hundreds of millions of CPU core-hours!



H-AMR:What'’s Your Nail?

o Multi-GPU 3D H-AMR (“hammer”, Liska, AT, et al. 2018):
® Based on HARMPI

® 85% parallel scaling to 4096 GPUs (MPIl, OpenMP,
OpenCL, CUDA, NVLINK, GPUDIRECT)

® |00x speedup on | GPU vs | BW CPU core

Matthew Liska
(U of Amsterdam)

Blue Waters Symposium 2019
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® Advanced features (extra few - |0x speedup): (U of Amsterdam)
® Adaptive Mesh Refinement (AMR)

® | ocal adaptive time-stepping

Rest mass density log(p)
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® These advances are crucial for enabling
next-generation research:

e 5M K20x GPU-hours/yr = effectively §

5B CPU core-hours/yr on Blue Waters ™

® Science is no longer limited by Lo

computational resources!




No signs of alignment...
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® No sign of alignment at this thickness, h/r = 0.05...
® [Effective resolution 28808601200, 3 AMR levels

Liska, Hesp, AT+ 2019, MNRAS, submitted, arXiv:1904.08428



Th|n Misaligned Disks Align and Break

at 34901 R,/c

BLUF WATERS!

SUSTAINED PETASCALE COMPUTING
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First demonstration of (Bardeen-Petterson?) alignment and disk breaking in GRMHD!

Formation of powerful precessing jets — can this explain jets from quasars?
Inflow equilibrium out to 15-20 7,

Effective resolution 2880x860x 1200, 3 AMR levels

Liska, AT+ 2019, MNRAS, doi:10.1093/mnras/stz834
Liska, Hesp, AT+ 2019, MNRAS, submitted, arXiv:1904.08428



Even Thinner Disks Align to Larger Distance

at 48465 R,/c 7 80 at 48465 R,/c
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-10 0 10 -80 -40 0 40 80
Start with h/r = 0.03, cool down to h/r = 0.015

Alignment radius is larger for smaller h /7
Inflow equilibrium out to 10 7

Effective resolution 5760x1720x2400, 4 AMR levels

Liska, Hesp, AT+ 2019, MNRAS, submitted, arXiv:1904.08428



Thin Strongly Misalighed Disks Tear

® Disks can tear up at 69953 Ry/c
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Thin Strongly Misalighed Disks Tear

® Disks can tear up
into individual
segments

® Extra dissipation
and luminosity

® Completely
different
luminosity profile

® Can affect BH spin
measurements

® Can this explain
larger observed
disk size than

expected!
(Blackburne+201 1)

BLUE WATER

SUSTAINED PETASCALE COMPUTING Liska, Hesp, AT+ 2019, S, submitted, arXiv:1904.08428
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BW enabled training of young scientists presenting posters:

Matthew Liska Koushik Chatterjee Zack Andalman
(Amsterdam — (Amsterdam) (Evanston Township
Harvard) High School,

Northwestern — Yale )
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Summary )

® Blue Waters enabled us to begin to
understand the typical tilted black hole

accretion

® Bardeen-Petterson-like alignment,
breaking, and tearing of thin disks first
seen for magnetized black hole accretion disks
> essentially unexplored observational

manifestations

® \We thank the Blue Waters team who ensured
smooth running and helped us to create 3D
visualizations
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