

How Do Black Holes Explode Galaxies/Clusters?

How Do Black Holes Explode Galaxies/Clusters?

How Do Black Holes Explode Galaxies/Clusters?

YES: typical disks are tilted

YES: typical disks are **tilted**No: we do not understand them (yet)

- Thin disks can align due to Bardeen-Petterson (1975) effect
 - Seen only in pseudo-Newtonian simulations, not in GR (Nixon et al. 2012; Nealon et al. 2015)
 - Do thin disks align in GR? Do they form jets?

- Thin disks can align due to Bardeen-Petterson (1975) effect
 - Seen only in pseudo-Newtonian simulations, not in GR (Nixon et al. 2012; Nealon et al. 2015)
 - Do thin disks align in GR? Do they form jets?
- Challenge: **enormous dynamical range**. Need to resolve thin disk *over* long run times:
 - prohibitive cost $\propto (h/r)^{-5}$
 - ullet very long accretion time: $t=4 imes10^5\,r_{
 m g}/{
 m c}\,\left(lpha/0.1
 ight)$ -1 (30h/r)-2 $(r/10r_{
 m g})^{1.5}$
- How could one possibly pull this off??!

- Thin disks can align due to Bardeen-Petterson (1975) effect
 - Seen only in pseudo-Newtonian simulations, not in GR (Nixon et al. 2012; Nealon et al. 2015)
 - Do thin disks align in GR? Do they form jets?
- Challenge: **enormous dynamical range**. Need to resolve thin disk *over* long run times:
 - prohibitive cost $\propto (h/r)^{-5}$
 - ullet very long accretion time: $t=4 imes10^5\,r_{
 m g}/{
 m c}\,\left(lpha/0.1
 ight)$ -1 (30h/r)-2 $(r/10r_{
 m g})^{1.5}$
- How could one possibly pull this off??!
 - approximately include frame-dragging effect, evolve for 1% of accretion time (Sorathia+13a,b, Hawley & Krolik 15, 18,19)

- Thin disks can align due to Bardeen-Petterson (1975) effect
 - Seen only in pseudo-Newtonian simulations, not in GR (Nixon et al. 2012; Nealon et al. 2015)
 - Do thin disks align in GR? Do they form jets?
- Challenge: **enormous dynamical range**. Need to resolve thin disk *over* long run times:
 - prohibitive cost $\propto (h/r)^{-5}$
 - ullet very long accretion time: $t=4 imes10^5\,r_{
 m g}/{
 m c}\,\left(lpha/0.1
 ight)$ -1 (30h/r)-2 $(r/10r_{
 m g})^{1.5}$
- How could one possibly pull this off??!
 - approximately include frame-dragging effect, evolve for 1% of accretion time (Sorathia+13a,b, Hawley & Krolik 15, 18,19)
 - is it even possible to attack the full problem?
 - this would require hundreds of millions of CPU core-hours!

- Multi-GPU 3D H-AMR ("hammer", Liska, AT, et al. 2018):
 - Based on HARMPI
 - 85% parallel scaling to 4096 GPUs (MPI, OpenMP, OpenCL, CUDA, NVLINK, GPUDIRECT)
 - I00x speedup on I GPU vs I BW CPU core

Matthew Liska (U of Amsterdam)

- Multi-GPU 3D H-AMR ("hammer", Liska, AT, et al. 2018):
 - Based on HARMPI
 - 85% parallel scaling to 4096 GPUs (MPI, OpenMP,

- Multi-GPU 3D H-AMR ("hammer", Liska, AT, et al. 2018):
 - Based on HARMPI
 - 85% parallel scaling to 4096 GPUs (MPI, OpenMP,

- Multi-GPU 3D H-AMR ("hammer", Liska, AT, et al. 2018):
 - Based on HARMPI
 - 85% parallel scaling to 4096 GPUs (MPI, OpenMP, OpenCL, CUDA, NVLINK, GPUDIRECT)
 - I00x speedup on I GPU vs I BW CPU core
- Advanced features (extra few 10x speedup):
 - Adaptive Mesh Refinement (AMR)
 - Local adaptive time-stepping

Matthew Liska (U of Amsterdam)

Rest mass density $\log(\rho)$

- Multi-GPU 3D H-AMR ("hammer", Liska, AT, et al. 2018):
 - Based on HARMPI
 - 85% parallel scaling to 4096 GPUs (MPI, OpenMP, OpenCL, CUDA, NVLINK, GPUDIRECT)
 - 100x speedup on 1 GPU vs 1 BW CPU core
- Advanced features (extra few 10x speedup):
 - Adaptive Mesh Refinement (AMR)
 - Local adaptive time-stepping
- These advances are crucial for enabling next-generation research:
 - 5M K20x GPU-hours/yr = effectively
 5B CPU core-hours/yr on Blue Waters
 - Science is no longer limited by computational resources!

Matthew Liska (U of Amsterdam)

Rest mass density $\log(\rho)$

No signs of alignment...

- No sign of alignment at this thickness, h/r = 0.05...
- Effective resolution $2880 \times 860 \times 1200$, 3 AMR levels

Liska, Hesp, AT+ 2019, MNRAS, submitted, arXiv:1904.08428

Thin Misaligned Disks Align and Break

- First demonstration of (Bardeen-Petterson?) alignment and disk breaking in GRMHD!
- Formation of powerful precessing jets \rightarrow can this explain jets from quasars?
- ullet Inflow equilibrium out to $15\text{--}20~r_{
 m g}$
- Effective resolution $2880 \times 860 \times 1200$, 3 AMR levels

Liska, AT+ 2019, MNRAS, doi:10.1093/mnras/stz834 Liska, Hesp, AT+ 2019, MNRAS, submitted, arXiv:1904.08428

Even Thinner Disks Align to Larger Distance

- ullet Start with h/r=0.03, cool down to h/r=0.015
- ullet Alignment radius is larger for smaller h/r
- Inflow equilibrium out to $10~r_{
 m g}$
- Effective resolution 5760x1720x2400, 4 AMR levels

Thin Strongly Misaligned Disks Tear

- Disks can tear up into individual segments
- Extra dissipation and luminosity
- Completely different luminosity profile
- Can affect BH spin measurements
- Can this explain larger observed disk size than expected? (Blackburne+2011)

Thin Strongly Misaligned Disks Tear

- Disks can tear up into individual segments
- Extra dissipation and luminosity
- Completely different luminosity profile
- Can affect BH spin measurements
- Can this explain larger observed disk size than expected? (Blackburne+2011)

Thin Strongly Misaligned Disks Tear

- Disks can tear up into individual segments
- Extra dissipation and luminosity
- Completely different luminosity profile
- Can affect BH spin measurements
- Can this explain larger observed disk size than expected? (Blackburne+2011)

Thin Strongly Misaligned Disks Tear

• Disks can tear up

- Disks can tear up into individual segments
- Extra dissipation and luminosity
- Completely different luminosity profile
- Can affect BH spin measurements
- Can this explain larger observed disk size than expected? (Blackburne+2011)

Liska, Hesp, AT+ 2019, MNRAS, submitted, arXiv:1904.08428

BW enabled training of young scientists presenting posters:

Matthew Liska (Amsterdam → Harvard)

Koushik Chatterjee (Amsterdam)

Zack Andalman (Evanston Township High School, Northwestern → Yale)

H-AMR + tilted disks

Event horizon images of tilted disks

Formation of disks in tidal disruptions

Summary

- Blue Waters enabled us to begin to understand the typical **tilted** black hole accretion
- Bardeen-Petterson-like alignment,
 breaking, and tearing of thin disks first seen for magnetized black hole accretion disks
 → essentially unexplored observational manifestations
- We thank the Blue Waters team who ensured smooth running and helped us to create 3D visualizations

