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* New Power Scaling in the Concentration - lonic Conductance
Relation in CNT.

*  Thickness Dependent Nanofluidic Transport in Nanopores
and Nanochannels.
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lonic Conductance
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* lonic transport in nanofluidic systems is associated with multi-physics
phenomena: BUE
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1) Diffusion and migration of ions.
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2) Electro-osmotic flow.

3) Surface charge regulation.

M. Manghi et al. Physical Review

4) Confinement.
F 98.1 (2018): 012605.

* The ionic conductance in CNTs shows a power law
relation. Gocc%a=1,01/31/2 and 2/3
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lonic Conductance

¢ Continuum simulations allow us to investigate the contribution of each
component (diffusion, migration, and convection).

* We couple Poisson-Nernst-Planck (PNP) with Navier-Stokes (NS):
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Total ionic flux: I'; = —D;V¢; — RT Vo + ciu Transport of species: i =V.T;
Diffusion Migration Convection Electric potential: V. (€,.V¢) = —%
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lonic Conductance
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Observed 2/3 power scaling.

Used molecular dynamics to correct the
estimate

continuum model and
experimental surface charge.

Selectivity coefficient (Ication/Ianion) Of ~3.7.
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lonic Conductance

» Studied the effect of surface charge on the molecular transport.
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* Computed average velocity of water Surface charge
and potassium ions in (11,11) CNT (mmz)y | watertS)| e (/)
with L= 10 nm at a concentration of 1
M  using  molecular  dynamics 27 294029 231
simulations. -54 3.0140.28 245

-114 1.9840.42 2.15
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v" New Power Scaling in the Concentration - lonic Conductance
Relation in CNT.

*  Thickness Dependent Nanofluidic Transport in Nanopores
and Nanochannels.
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Thickness Dependent Nanofluidic Transport

In fluid dynamics, the flow rate of pressure driven fluid is generally described by

Hagen-Poiseuille equation, in a circular pipe:
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Carbon nanotubes are shown to have several orders of magnitude higher
permeation rate than that of existing membranes.

| Experimentally, CNT is
shown to very high flow
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Fast water transport
is also observed

rates (enhancement E 4 computationally due
over no slip classical  * to highly frictionless
theory of ~1000). = walls of CNTs.

Holt et al. Science (2006). Joseph et al. Nano Lett. (2008).
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Thickness Dependent Nanofluidic Transport
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Thickness Dependent Nanofluidic Transport

In experiments, transport rates have been shown to be enhanced by several
orders of magnitudes over the rates predicted by the no-slip HP theory.

When the enhancement factors were reassessed using the corrected HP theory,

they approach unity.
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Conclusion

*  We performed continuum and molecular dynamics simulations to obtain a new
power-law scaling relation between the concentration and the conductance of
ionic transport.

* The continuum model was corrected using molecular dynamics inputs to predict
quantities for length scales less than 10 nm.

e  We studied the effect of surface charge density in CNT on the electroosmotic
velocity and selectivity of ions.

* We corrected the classical Hagen-Poiseuille equation to describe fluid flow rates in
nanoscale systems.

¢ The enhancement factor of flow rates approaches unity with the corrected Hagen-
Poiseuille theory.
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