BLUE WATERS SUSTAINED PETASCALE COMPUTING

Presented By: Aaron D. Saxton, PhD

7/11/19

Statistics Review

- Simple $y = m \cdot x + b$ regression
 - Least Squares to find m,b
 - With data set $\{(x_i, y_i)\}_{i=1,\dots,n}$
 - Very special, often hard to measure y_i
 - Let the error be
 - $R = \sum_{i=1}^{n} [(y_i (m \cdot x_i + b))]^2$
 - Minimize *R* with respect to *m* and *b*.
 - Simultaneously Solve
 - $R_m(m,b) = 0$
 - $R_b(m,b) = 0$
 - Linear System
- We will consider more general y = f(x)
 - $R_m(m,b) = 0$ and $R_b(m,b) = 0$ may not be linear

Statistics Review

- Regressions with parameterized sets of functions. e.g.
 - $y = ax^2 + bx + c$ (quadratic)
 - $y = \sum a_i x^i$ (polynomial)
 - $y = Ne^{rx}$ (exponential)

•
$$y = \frac{1}{1 + e^{-(a+bx)}}$$
 (logistic)

Statistics Review

- Polynomial model of degree 'n'
 - "degrees of freedom" models capacity

Deep Learning, Goodfellow et. al., MIT Press, http://www.deeplearningbook.org, 2016

Gradient Decent

- Searching for minimum
- $\nabla R = \langle R_{\theta_0}, R_{\theta_2}, \dots, R_{\theta_n} \rangle$
- $R(\vec{\theta}_{t+1}) = R(\vec{\theta}_t + \gamma \nabla R)$
- γ: Learning Rate
- Recall, Loss depends on data Expand notation,
 - $R(\vec{\theta}_t; \{(x_i, y_i)\}_n)$
 - Recall R and ∇R is a sum over i
- Intuitively, want *R* with ALL DATA? $(R = \sum_{i=1}^{n} [(y_i - f_{\theta_t}(x_i)]^2)$

Fictitious Loss Surface With Gradient Field

Fictitious Loss Surface With Gradient Field

SORTIUM

Gradient Decent

Stochastic Gradient Decent

- Recall *R* is a sum over *i* $(R = \sum_{i=1}^{n} [(y_i f_{\theta_t}(x_i)]^2)]$
- Single training example, (x_i, y_i) , Sum over only one training example
- $\nabla R_{(x_i, y_i)} = \langle R_{\theta_0}, R_{\theta_2}, \dots, R_{\theta_n} \rangle_{(x_i, y_i)}$
- $R_{(x_i,y_i)}(\vec{\theta}_{t+1}) = R_{(x_i,y_i)}(\vec{\theta}_t + \gamma \nabla R_{(x_i,y_i)})$
- γ: Learning Rate
- Choose next (x_{i+1}, y_{i+1}) , (Shuffled training set)
- SGD with mini batches
- Many training example, (x_i, y_i) , Sum over many training example
 - Batch Size or Mini Batch Size (This gets ambiguous with distributed training)
- SGD often outperforms traditional GD, want small batches.
 - <u>https://arxiv.org/abs/1609.04836</u>, On Large-Batch Training ... Sharp Minima
 - https://arxiv.org/abs/1711.04325, Extremely Large ... in 15 Minutes

Neural Networks

Activation functions
 Logistic

ReLU (Rectified Linear Unit)

Arctan $\sigma(x) =$

Softmax

•
$$g_k(x_1, x_2, ..., x_N) = \frac{e^{x_k}}{\sum e^{x_k}}$$

- Parameterized function
 - $Z_M = \sigma(\alpha_{0m} + \alpha_m X)$
 - $T_K = \beta_{0k} + \beta_k Z$
 - $f_K(X) = g_k(T)$
- Linear Transformations with pointwise evaluation of nonlinear function, σ
- $\beta_{0i}, \beta_i, \alpha_{0m}, \alpha_m$
 - Weights to be optimized

Faux Model Example

I

NCSA

GREAT LAKES CONSORTIUM

Distributed Training, data distributed

GREAT LAKES CONSORTIUM

FOR PETASCALE COMPUTATION

NESA

CRAY

GREAT LAKES CONSORTIUM

FOR PETASCALE COMPUTATION

NCSA

CRA

GREAT LAKES CONSORTIUM

Autoregression

$$X_t = c + \sum_{i=1}^p \phi_i B^i X_t + \epsilon_t$$

- Back Shift Operatior: Bⁱ
 Autocorrelation
 - $R_{XX}(t_1, t_2) = E[X_{t_1}\overline{X_{t_2}}]$
- Other tasks
 - Semantic Labeling

- Few projects use pure RNNs, this example is only for pedagogy
- RNN is a model that is as "deep" as the modeled sequence is long
- LSTM's, Gated recurrent unit,
- No Model Parallel distributed training on the market (June 2019)

