Full-scale biophysical modeling of hippocampal networks during spatial navigation

Ivan Raikov, Aaron Milstein, Darian Hadjiabadi, Ivan Soltesz

Stanford University

Project PI: Ivan Soltesz

Introduction

I use Blue Waters to construct, simulate and analyze full-scale biophysical computational models of the rodent hippocampus and understand the role of the neural circuitry in processing spatial information.

- Full-scale: 1:1 correspondence between model neurons and biological system (completed model will have approximately 2 x 10 neurons and 4 x 10 connections)
 - **Biophysical**: detailed neuronal morphology, synaptic connections, equations of ion channel and synapse currents (each model neuron can have thousands of state variables)
 - Hippocampus: part of the brain responsible for learning, memory, and spatial navigation

Introduction

Yi et al., 2016

The brain's navigational system

Sequential Activity in the Hippocampus

Celiulai diversity allu recultetti collifectivity ellable rhythm generation in a full scale model of CA1

High Biological realism: Intermediate Low CA1 network model: Theta LFP Theta oscillations: Previous work Neurogliaform CA3 population input spectrogram 5000 Model: Bezaire, Raikov & S.C.-Assoc. Soltesz, 2016 CCK+ Basket CCR+1 Network configuration: CA1 SEA PV+ Basket # of principal cells >300,000 Bistratified Pyramidal # of synapses / principal cell ~20,000 Ivy Biophysical Cell excitability model Axo-axonic # of cell types 1.6 2 2.4 Time (s) O-LM Cell-type-specific connectivity Distance-dependent Input pattern Constant Input strengths Equal CA1 ripple LFP Long-term plasticity None Sharp wave\ripples: CA1 ripple LFP spectrogram Network output: (m) CA3 population input Theta, gamma, ripple Rhythmicity Spikes Output selectivity None ₹ 200 Output fraction active (%) ~100% Prequ 120 Key insight: |Cellular and circuit Field 300 340 mechanisms of rhythm

Bezaire, M. J., Raikov, I., Burk, K., Vyas, D., & Soltesz, I. *eLife*, 2016.

generation

0.25 0.35

Time (s)

380

Time (ms)

Time (ms)

hippocampus and cortex

Diversity of information representation in the

- neuronal sequences are organized internally and do not require sensory inputs or motor outputs
- the internally organized sequences can represent spatial and temporal information and planned behaviors corresponding to the near future.
- The aim of this project is to decipher the cellular and network mechanisms of the formation of population activity sequences that represent spatiotemporal information.

Fujisawa et al., 2017

Topographical connectivity in the hippocampus

Harland, Contreras and Fellous, 2017

the hippocampal dentate gyrus

Biological realism:	High	* In progress
	Intermediate	
	Low	

	Previous work	
Model:	Raikov, Milstein & Soltesz	
Network configuration:	DG	
# of principal cells	1,000,000	
# of synapses / principal cell	~10,000	
Cell excitability model	Biophysical	
# of cell types	9	
Cell-type-specific connectivity	Distance-dependent	
Input pattern	Selective (grid + place)	
Input strengths	* History-dependent	
Long-term plasticity	None	
Network output:		
Rhythmicity	Theta, gamma	
Output selectivity	* Realistic anatomical gradient of field widths	
Output fraction active (%)	* <2% GC, >15% MC	
Key insight:	Role of feedback excitation from mossy cells in regulating sparsity and selectivity in the dentate gyrus.	

Raikov, I., Milstein, A. D., Ng G., Hadjiabadi, D. & Soltesz, I. Unpublished, 2019.

realistic Sectificity in a ran scare incact of the

dentate gyrus

Schneider et al., PloS Comp Biol, 2014

dentate gyrus

Topography of spatial inputs to the hippocampus from entorhinal grid cells

From Stensola et al., *Nature*, 2012.

Raikov, I., Milstein, A. D., Ng G., Hadjiabadi, D. & Soltesz, I. *Unpublished*, 2019.

Raikov, I., Milstein, A. D., Ng G., Hadjiabadi, D. & Soltesz, I. *Unpublished*, 2019.

Raikov, I., Milstein, A. D., Ng G., Hadjiabadi, D. & Soltesz, I. *Unpublished*, 2019.

Raikov, I., Milstein, A. D., Ng G., Hadjiabadi, D. & Soltesz, I. *Unpublished*, 2019.

Testing a theory for hippocampal interactions in sequence generation

Lisman, J. E., Talamini, L. M., & Raffone, A. Neural Networks, 2005.

Conclusions

- We have made significant progress developing a full-scale, biophysical model of the rodent hippocampus
- Model comprised of realistically diverse cell types, cell-typespecific connectivity, realistic anatomical distribution of cells, and non-uniform distributions of synaptic input strengths
- The dentate gyrus (DG) model generates sparse, selective, and sequential population activity that matches in vivo experimental data
- Prototype to develop general software infrastructure to specify, simulate, optimize, and analyze large-scale biophysically-detailed neuronal network models

Simulation run time on Blue Waters

Model	Number of Nodes	Simulated time	Run time
Dentate gyrus	2048	10 s	7.5 hours
Dentate gyrus	4096	10 s	6.1 hours
CA1	1024	10 s	12.8 hours
CA1	2048	10 s	6.2 hours

⁻ Scalable across tens of thousands of processors on Blue

Acknowledgments

Soltesz lab members:

Aaron Milstein

Grace Ng

Sarah Tran

Darian Hadjiabadi

Raymond Liou

External collaborators:

Cesar Renno-Costa

(Digital Metropolis

Institute, Brazil)

Sandro Romani (Janelia)

Extreme Science and Engineering Discovery Environment

