Unified Modeling of Galaxy Populations in Clusters

Thomas Quinn University of Washington NSF PRAC Award 1613674

Michael Tremmel Arif Babul Iryna Butsky Urmila Chadayammuri Seoyoung Lyla Jung Fabio Governato Joachim Stadel James Wadsley

Laxmikant Kale Filippo Gioachin **Pritish Jetley** Celso Mendes Amit Sharma Lukasz Wesolowski Gengbin Zheng Edgar Solomonik Harshitha Menon **Orion Lawlor**

Outline

- Scientific background (Why it matters)
- The Galaxy Clustering Problem (Why Blue Waters)
- Charm++ and ChaNGa (Key Challenges)
- Recent results (Accomplishments)

Clusters: the science

- Largest bound objects in the Universe
- Visible across the entire Universe
- Baryonic content is observable
- "Closed box" for galactic evolution

Clusters: the challenge

- Good models of stellar feedback
- Good models of AGN (black hole) feedback
- Hydrodynamic instabilities require good algorithms
- Resolution: 10⁵ Msun particles in 10¹⁵ Msun object
- Highly "clustered" computation

Clustered/Multistepping Challenges

- Computation is concentrated in a small fraction of the domain
- Load/particle imbalance
- Communication imbalance
- Fixed costs:
 - Domain Decomposition
 - Load balancing
 - Tree build

Load distribution

LB by particle count

Time Profile

^{29.4} seconds

LB by Compute time

Time Profile

15.8 seconds

Charm Nbody GrAvity solver

- Massively parallel SPH
- SNe feedback creating realistic outflows
- SF linked to shielded gas
- SMBHs
- Optimized SF

parameters

Menon+ 2014, Governato+ 2014

Charm++

- C++-based parallel runtime system
 - Composed of a set of globally-visible parallel objects that interact
 - The objects interact by asynchronously invoking methods on each other
- Charm++ runtime
 - Manages the parallel objects and (re)maps them to processes
 - Provides scheduling, load balancing, and a host of other features, requiring little user intervention

Scaling to .5M cores

Parallel Programming Laboratory @ UIUC

The **ROMULUS** Simulations

Certified organic, free-range, locally grown supermassive black holes

- ✓ Early Seeding in low mass halos
- Self-consistent and physically motivated dynamics, growth, and feedback
- ✓ <u>Naturally</u> produces large-scale outflows
- ✓ No unnecessary additives or assumptions

RomulusC

10¹⁴ M_{sun} Galaxy Cluster Tremmel+ 2019 (stars, uvj colors)

Romulus25

25 Mpc Volume Tremmel+ 2017 (gas temp)

Galaxy Cluster Observables

Galaxy populations

Y LKDC1

Outflows and Quenching

AGN feedback and Non/Cool Cores

Exploring the physics of groups & clusters in a holistic manner

- Diffuse gas properties
 - Baryon fraction, entropy profile
 - CC/NCC dichotomy & mergers
- Evolution of Cluster galaxies
 - Quenching & morphology changes
- AGN/BH evolution & dynamics
 - Merger rates & LISA
 - Feedback mode & duty cycles
- Cosmology: LSS/CMB tension
 - Stellar, gas, dark matter dynamics
 - Hydrostatic bias

Take Aways

- Galaxy Clusters are hard:
 - Scale is set by galactic (i.e. star formation) physics
 - Orders of magnitude larger than galaxies
 - Computational effort is spatially concentrated.
 - (Probably should include MHD/cosmic rays)
- But now clusters are doable
 - Capability machines
 - Advanced load balancing techniques
 - First "holistic" simulations of galaxy clusters

Acknowledgments

- NSF ITR
- NSF Astronomy
- NSF SSI
- NSF XSEDE program for computing
- BlueWaters Petascale Computing
- Blue Waters PAID Program
- NASA HST
- NASA Advanced Supercomputing

Modeling Star Formation: it's hard

- Gravitational Instabilities
- Magnetic Fields
- Radiative Transfer
- Molecular/Dust Chemistry
- Driven at large scales: differential rotation
- Driven at small scales: Supernovea and Stellar Winds
- Scales unresolvable in cosmological simulations

Resolution and Subgrid Models

- Maximize Simulation Resolution
 - Capture tidal torques/accretion history (20+ Mpc)
 - Adapt resolution to galaxy (sub-Kpc, 10⁵ Msun)
- Capture Star Formation in a sub-grid model
 - Stars form in high density environments
 - Supernovea/stellar winds/radiation regulate star formation
 - Mitigate issues with poor resolution (overcooling)
 - Tune to match present day stellar populations

Previous PRAC: good morphologies

Danielle Skinner

Good morphologies across a population

z = 3 z = 2 z = 1.2 z = 0.75 z = 0.5

Black hole/AGN feedback

- Supernova feedback doesn't suppress star formation in massive galaxies
 - Modeling of more energetic feedback required
- Components of AGN modeling:
 - Seed (1e6 Msun) BH form in dense, low metallicity gas
 - BH grow from accreting gas, and release energy into the surrounding gas (Active Galactic Nuclei)
 - BH in merging galaxies sink to the center and merge (LIGO, eLISA)

Results: A cluster at unprecedented resolution

- Structure of the brightest cluster galaxy
- Other galaxies in the cluster environment
- The state of the intracluster medium

Introducing RomulusC The highest resolution cosmological hydro simulation of a cluster to date

Name	Spatial Res. ^a kpc	$M_{DM} M_{\odot}$	$M_{gas} \ M_{\odot}$
RomulusC	0.25	3.39×10^{5}	2.12×10^{5}
TNG300 ^b	1.5	7.88×10^{7}	7.44×10^{6}
TNG100 ^b	0.75	5.06×10^6	9.44×10^{5}
TNG50 (in progress ^c)	0.3	4.43×10^{5}	8.48×10^{4}
Horizon-AGN ^d	1	8.0×10^{7}	1.0×10^{7}
Magneticum ^e	10	1.3×10^{10}	2.9×10^{9}
Magneticum ^e high res	3.75	6.9×10^{8}	1.4×10^{8}
Magneticum ^e ultra high res	1.4	3.6×10^{7}	7.3×10^{6}
C-EAGLE ^{f,g}	0.7	9.6×10^{6}	1.8×10^{6}
EAGLE ^g (50, 100 Mpc)	0.7	9.6×10^{6}	1.8×10^{6}
Omega500 ^h	5.4	1.56×10^{9}	2.7×10^{8}

Bocquet+16, Armitage+18, Schave+14,25hirasaki+18

Zoom-In Simulation $M_{200}(z=0) = 1.5e14 M_{sun}$ **Resolution:** 250 pc, 2e5 M_{sun}

Mettessesses

Outflows in the BCG

Winds are ubiquitous through time

Morphology of BCG

Quenching in the cluster

Quenching with radius

IntraCluster Medium

Zoomed Cluster simulation

Luminosity Function Anderson, et al 2016

PAID: ChaNGa GPU Scaling

- ChaNGa has a prelimary GPU implementation
- Goals of PAID:
 - Tesla \rightarrow Kepler optimization
 - SMP optimization
 - Multistep Optimization
 - Load balancing
- Personnel:
 - Simon Garcia de Gonzalo, NCSA
 - Michael Robson, Harshitha Menon, PPL UIUC
 - Peng Wang, Tom Gibbs (NVIDIA)

PAID GPU Progress

- 2X speed up of main gravity kernel; 1.4X speedup of 2nd gravity kernel
 - Interwarp communication
 - Caching of multipole data
 - Higher GPU occupancy
 - Overall speedup of 60%
- SMP queuing of GPU requests
 - Reduced memory use, allowing more host threads
 - GPU memory management still an issue

Broader Impacts: Pre-Majors and Supercomputing

- UW Pre-Major in Astronomy Program:
 - Engage underrepresented populations in research early
 - Establish a cohort
 - Plug major leak in the STEM education pipeline
- Simulation data analysis is ideal for this research
 - Science and images are compelling
 - Similarity to Astronomical data reduction