

A Scalable AMR Gravity Solver for ENZO-E (Extreme-scale ENZO)

Michael L Norman and James Bordner

San Diego Supercomputer Center

University of California, San Diego

Supported by NSF grants CSSI-1835402, SI2-SSE-1440709, PHY-1104819, PRAC-1516003, PRAC-1810774

M. L. Norman - Blue Waters Symposium 2019

Science Motivation: Large-scale simulations of the IGM including galaxy feedback

- Precision comparisons between models and simulations require large volumes and high resolution in galaxies
- Standard ENZO code struggles to do this due to limited scalability of its AMR implementation (P<1000)
- In 2011, James Bordner and I embarked on a fromscratch redesign and reimplementation of ENZO capable of scaling AMR to millions of cores.
- Blue Waters has been instrumental in the development and testing of ENZO-E

PRAC: Realistic Simulations of the Intergalactic Medium: The Search for Missing Physics-Part 2

ENZO simulation

Projection of baryon density in a section of a 1024³, 25.6 Mpc box with 4 additional levels of refinement. 8K cores, Blue Waters #AMR grids versus level of refinement Potential level of concurrency: >100,000

Adopted Strategy

- Keep the best part of Enzo (numerical solvers) and replace the AMR infrastructure
- Implement using modern OOP best practices for modularity and extensibility
- Use the best available scalable AMR algorithm:
 - Array-of-Octrees (aka Forest-of-Octrees)
- Move from bulk synchronous to data-driven asynchronous execution model to support patch adaptive timestepping
- Leverage parallel runtimes that support this execution model, and have a path to exascale (Charm++)
- Make AMR software library application-independent so others can use it

Software Architecture

Enzo numerical solvers (Enzo-E)

Array-of-octrees AMR (Cello)

Charm++

Hardware (heterogeneous, hierarchical)

How does Cello implement AOT?

- Array of octrees of arbitrary size K x L x M
- An octree has leaf nodes which are **blocks** (N x N x N)
- Each block is a chare (unit of sequential work)
- The entire AOT is stored as a chare array using a bit indexing scheme
- Chare arrays are fully distributed data structures in Charm++

2 x 2 x 2 array

Demonstration of ENZO-E

Interacting blast waves with PPM solver - Total energy

Demonstration of ENZO-E

Mesh refinement level; 32³ blocks/chare

Largest AMR
simulation
in the
world?
1.7 trillion cells
262K cores on NCSA Blue Waters
html

	•	•	•	•	•	•	m	an i								m							•	•	•		•	۲		•			•	m	•		٠		•	•	•		•
				•		-					•					•	-					•	-							•	•	-	•	•			•		•				
						•			•		•			•						•		E					•				•		•		•						•	•	
		•	•					•		-					-							-	-				-	-					•	•	•						•		•
			۲			•		•							-		•					m	-		•			•	•		•	•	•	•								-	
								•								•										•				•	•		•		•				•				•
		•		m																				•					•	•					•		•				•		
															•									•		•												•					
	-	•			-												•				•					E				-						1				•			
		•			-	-	-			•														-	•		•				•						•			-	•		
•		•												•										m	•		-				•					•					•	•	
	-				•																				•					•												-	
			•	•	•					•							m											•											•	•			
			•										-			•		m													•		•	•		•			•				
			•	•	•							•				-							•			•						•										-	
					•											-			•				•			•		•	•				•										
	•				•																٩					٩					•	•				•			•		•		•
							•	٩				m		٩					•				•				•			-	•		•			•			•		•	•	•
	•	•	•	•		•		ĸ				•		•	•	•	٠					•	•	•			•	•	•		•				•	•	•		•		•		
			E						•				•		•							•	•		•	•	•	•			•	•	•	•	•	•	•			•	•	•	•
			ĸ	•			•		•			•	•		•								•	•	•	m			•	•	•	•	•			•		•	•	•	•		
	•	•	•	•			•					٠				•	m	•				-	•	•	•	•	•				•		•	•		٩						•	•
	•		•			•				•				•		•	۲				٩			•			•				•	•			•	•	•	•		•	•		-
	٠	۲	•	-	•	•					•	•		•				•		•		•	•	•	•				•		•	•		•		m	•	•		•	•		•
	•	m			-	•		•		•			•			•	•	m	•				٠		m	•	•		•	•		•	•		•	٩	•				•		-
	•	•		•	-							•	٠		•					•	•			•		•		•	•		•	•		•	ĸ		•		n	•	•	•	
	m	•	ĸ	•	•	m	•		•	•			•		•				•			-			•	•		•	•			•		•								•	
		•	•			•	•	an i	•			•		۲	•	-				•	m		•	•		٩	•		٩	•	٩	•	۲		•	•		•	•	•	٩	•	
		•	•	E	۲	•		•	•		•	•	•	۲			٠	•	•	•	•		•	m		•	•				•	•	I N				•		•	•			•
				•	•		•	•	•	•	•				•	۲		•					٩	•					•		an i	•	•	•				•					
			٩			•		•						•		•							•		E		•		-		•		•		•								
	•			•		۲	•	•					•		•	•	٦	•	٩	•		E	E	n.				m			•			•	•		•			•	•		•
	8 0		•		•	•	•	ĸ								I N	•	•	•		•	•	E			٩	•	•			•		•	•	•	۲	•				•	•	-
		•	•			•					-				•	•		m		•			•			an i	•		•		•		n		•						•		
			•	•									•	E		•	•		I n			•	•	•		an i	•						•		•	•			٩	•	•		
		•	•		•			•	•	•	•			•	•	٩	•	•			m	•				•					an i		•			•	•					-	•
			۲	•	•	•			an i	•	•	•								•	•		•	•	•	•		•							•	n	•	•	•		•	•	•
	•			m	•																														•	۲	•						٩
			•	•																														•					•				
																									•													•			•	•	
١	•			•																																		•					
	۲		•	•																																		٩					
		•			-								•		•																						•	•				٩	

1 1 6

6/3/2019

.

.

Hydrodynamic Cosmology Scaling Tests

Density projection in 512³ simulation

- Uniform grid only
- Weak and strong scaling
- 32³ blocks/chare
- 1, 8, 64 chares/core
- 64³ to 2048³ meshes
- p=8 to 128k cores

Enzo-P Cosmology scaling on Blue Waters

6/3/2019

2019

Global Multilevel AMR Poisson Solver

• Each square is projection of 16³ block

• Ax=b

- A is non-symmetric matrix arising from discretizing Laplacian operator on multilevel mesh
- x is gravitational potential $\boldsymbol{\varphi}$
- b is matter density source term
- Algorithm
 - BiCGStab
 - Diagonally-preconditioned
 - Multigrid-preconditioned
 - Parallelize over all blocks in AOT using Charm++
- poor scalability

AMR cosmology with HG* solver

64³ mesh (4³ array of 16³ blocks), 4 AMR levels (1024³ eff.), PE=8

* HG = multigrid preconditioned BiCGStab

AMR Cosmology Blocks per Level N=64³ P=8 1000 ~1000 blocks/PE 100 at all levels 10 1 0.1 level 0 level 1 0.01 level 2 level 3 level 4 0.001 100 50 150 200 250 300 350 400 0 Cycle

Blocks / PE / Level

M. L. Norman - Blue Waters Symposium 2019

Domain-decomposed AMR Poisson Solver (DD)

	Ω	Ω	Ω	Ω
	Ω	Ω	Ω	Ω
+	Ω	Ω	Ω	Ω
	Ω	Ω	Ω	Ω

Each block becomes an octree

Domain-decomposed AMR Poisson Solver (DD)

- Step 1: project density field to root grid blocks
- Step 2: global Poisson solve on root grid using multigrid solver
- Step 3: interpolate Φ_0 to faces of each octree

Each block becomes an octree

Domain-decomposed AMR Poisson Solver (DD)

Ω	Ω	Ω	Ω
Ω	Ω	Ω	Ω
Ω	Ω	Ω	Ω
Ω	Ω	Ω	Ω

- Step 4: local Poisson solve on each octree using BiCGtab
- Step 5: Jacobi smooth potential Φ_{ℓ} on leaf blocks

Each block becomes an octree

DD in action

128³ mesh (8³ array of 16³ blocks), 4 AMR levels (2048³ eff.), PE=64

Is DD scalable? Yes!

M. L. Norman - Blue Waters Symposium

AMR Cosmology Blocks per Level N=512³ P=4096

M. L. Norman - Blue Waters Symposium

NSF CSSI grant (ENZO-E)

- \$1.9M, 3 years
- Goal: feature-complete implemention of ENZO solvers into ENZO-E
- Goal: migration of ENZO community to ENZO-E
- Goal: implementations for exascale (accelerators)
- PI team
 - Mike Norman, James Bordner (UCSD)
 - Brian O'Shea (MSU)
 - Greg Bryan (Columbia)
 - John Wise (Georgia Tech)

ENZO-E tasks

- FMM gravity solver
- Block-adaptive local timestepping
- Adaptive ray tracing radiative transfer
- Cosmic ray transport incl. MHD
- Interfacing to GRACKLE chemistry library
- Interface to GPUs using Kokkos
- Lots of scaling/optimization work......

Contribution of Blue Waters

- You need a petascale platform to develop an exascale code!
 - Sheer size
 - Balanced architecture
 - Throughput (especially scaling runs)
 - Favorable Q policies
 - Mature SW environment
- Thanks for the memories!!!!