Employing Microsecond-Level Simulations of Membrane Proteins to Capture Their Millisecond-Level Behaviors Using Blue Waters

Mahmoud Moradi

Department of Chemistry and Biochemistry

University of Arkansas

biosimlab.uark.edu

Blue Waters Symposium 2019 Sunriver, OR June 3, 2018

Outline

- Using molecular dynamics (MD) to study protein large-scale conformational changes
- Is the so-called **unbiased MD** reliable?
- How can we use biased MD to study large-scale conformational changes?
- Developing loosely-coupled multiple-copy (LCMC) MD algorithms within NAMD
- Applications to proton-coupled oligopeptide transporter GkPOT and mechanosensitive channel of large conductance MscL

Large-Scale Conformational Changes in Membrane Transport Proteins

 Membrane transporters rely on large-scale conformational changes between inward-facing (IF) and outward-facing (OF) states (alternating access mechanism).

 Channels may require large-scale conformational changes between their open/active and closed/inactive states.

Large-Scale Conformational Changes in Membrane Transport Proteins

 Membrane transporters rely on large-scale conformational changes between inward-facing (IF) and outward-facing (OF) states (alternating access mechanism).

Channels may require large-scale conformational changes between their open/active and closed/inactive states.

Large-Scale Conformational Changes in Membrane Transport Proteins

- Large-scale conformational changes require concerted motions of thousands of atoms whose motions are coupled by direct or indirect/allosteric interactions.
- It typically takes several to thousands of microseconds for a process like those described above to take place.
- These conformational changes are typically triggered by certain chemical/mechanical changes in the protein/environment.

Lipid-Dependent Alternating Access Mechanism of a Bacterial Multidrug ABC Exporter

Kalyan Immadisetty,[†] Jeevapani Hettige,[†] and Mahmoud Moradi*®

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States

Is the so-called unbiased MD reliable?

A Case Study: Proton-coupled Oligopeptide Transporters (POTs)

A Case Study: Proton-coupled Oligopeptide Transporters (POTs)

GkPOT (PDB:4IKV, 1.9 Å) ~100,000 atoms Conventional unbiased MD simulations performed: **8** conditions (different protonation states, substrates) × 400 ns \times 2 repeats

K Immadisetty, J Hettige, and M Moradi, *What Can and Cannot Be Learned from Molecular Dynamics Simulations of Bacterial Proton-Coupled Oligopeptide Transporter GkPOT*? J. Phys. Chem. B, **121**:3644-3656, 2017.

Monitoring Global Conformational Changes

Reproducibility Check

Reproducibility Check

Although a common practice, statements made about millisecond-level biomolecular events based on **unbiased** sub-microsecond level simulations may not be reliable.

How can we use biased MD to study large-scale conformational changes?

How can we use biased MD to study large-scale conformational changes?

Path-Finding Algorithms and Free Energy Calculations Based on Loosely-Coupled Multiple-Copy (LCMC) MD

Path-finding algorithms:

e.g., string method (SM or SMwST)

- Start from an initial string of N images (ζ_i)
- Restrain M copies of each image for time Δt

$$U_i(\boldsymbol{\xi}) = \frac{1}{2}k(\boldsymbol{\xi} - \boldsymbol{\zeta}_i)^2$$

- Release the restraints and run for time $\Delta t'$
- New string $(\boldsymbol{\zeta}_i)$ is determined from $\langle \boldsymbol{\xi} \rangle_i$'s
- Iterate until converged
- Free energy calculations:

e.g., umbrella sampling (US or BEUS): – Bias one or more (e.g., M) copies: $U_i(\xi) = \frac{1}{2}k(\xi - \zeta_i)^2$

Use a reweighting scheme to unbias the data:

 $\frac{e^{-\beta U_i(\boldsymbol{\xi}^t)}}{\sum_i n_j e^{-\beta (U_j(\boldsymbol{\xi}^t) - F_j)}}$ Shirts, Chodera, JCP, 129, 124105 (2008)

all samples

Riemannian Reformulation

 Riemannian reformulation of path-finding algorithms and free energy calculations methods such as SMwST/BEUS provides solutions for the minimum free energy path and its free energy that are **invariant under coordinate transformation**.

 The Riemannian formulation allows for developing more robust free energy calculation methods and path-finding algorithms (due to the "invariance" feature).

Fakharzadeh & Moradi, *Effective Riemannian diffusion model for conformational dynamics of biomolecular systems*. **J Phys Chem Lett.** 2016;7(24):4980-4987.

W. Jiang, J. Phillips, et al. Computer Physics Communications, 185, 908, 2014.

pH-induced Activation of an Engineered Mechanosensitive Channel of Large Conductance (MscL)

PDB:

20AR

Closed

TM Helices

MD

Model

Arkansas BIOSCIENCES UNIVERSITY OF INSTITUTE ARKANSAS

Biomolecular Simulations Group @ Department of Chemistry and Biochemistry

Protein Conformational Landscapes, Energetics, and Dynamics

Curtis Goolsby

Dylan Ogden

Hamid Tabari

Ugochi Isu

Vivek Govind Kumar

Adithya Polasa

Arkansas High Performance Computing Center

XSEDE Extreme Science and Engineering Discovery Environment