Employing Microsecond-Level Simulations of Membrane Proteins to Capture Their Millisecond-Level Behaviors Using Blue Waters

Mahmoud Moradi

Department of Chemistry and Biochemistry

University of Arkansas

biosimlab.uark.edu

Blue Waters Symposium 2019 Sunriver, OR June 3, 2018

Outline

- Using **molecular dynamics** (MD) to study protein **large-scale conformational changes**
- Is the so-called **unbiased MD** reliable?
- How can we use **biased MD** to study large-scale conformational changes?
- Developing **loosely-coupled multiple-copy** (LCMC) MD algorithms within NAMD
- Applications to proton-coupled oligopeptide transporter **GkPOT** and mechanosensitive channel of large conductance **MscL**

Large-Scale Conformational Changes in Membrane Transport Proteins

• **Membrane transporters** rely on large-scale conformational changes between **inward-facing (IF)** and **outward-facing (OF)** states (**alternating access mechanism).**

• **Channels** may require large-scale conformational changes between their **open/active** and **closed/inactive** states.

Large-Scale Conformational Changes in Membrane Transport Proteins

• **Membrane transporters** rely on large-scale conformational changes between **inward-facing (IF)** and **outward-facing (OF)** states (**alternating access mechanism).**

• **Channels** may require large-scale conformational changes between their **open/active** and **closed/inactive** states.

Large-Scale Conformational Changes in Membrane Transport Proteins

- Large-scale conformational changes require **concerted motions of thousands of atoms** whose motions are coupled by direct or indirect/allosteric interactions.
- It typically takes **several to thousands of microseconds** for a process like those described above to take place.
- These conformational changes are typically triggered by certain **chemical/mechanical changes** in the protein/environment.

Lipid-Dependent Alternating Access Mechanism of a Bacterial **Multidrug ABC Exporter**

Kalyan Immadisetty,[†] Jeevapani Hettige,[†] and Mahmoud Moradi*[®]

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States

Is the so-called unbiased MD reliable?

A Case Study: Proton-coupled Oligopeptide Transporters (POTs)

A Case Study: Proton-coupled Oligopeptide Transporters (POTs)

GkPOT (PDB:4IKV, 1.9 Å) ~100,000 atoms Conventional unbiased MD simulations performed: **8 conditions (different protonation states, substrates)** × **400 ns** × **2 repeats**

K Immadisetty, J Hettige, and M Moradi, What Can and Cannot Be Learned from Molecular Dynamics Simulations of Bacterial Proton-Coupled Oligopeptide Transporter GkPOT? J. Phys. Chem. B, **121**[:3644-3656, 2017.](http://dx.doi.org/10.1021/acs.jpcb.6b09733)

Monitoring Global Conformational Changes

Reproducibility Check

Reproducibility Check

Although a common practice, statements made about millisecond-level biomolecular events based on **unbiased** sub-microsecond level simulations may not be reliable.

How can we use biased MD to study large-scale conformational changes?

How can we use biased MD to study large-scale conformational changes?

Path-Finding Algorithms and Free Energy Calculations Based on Loosely-Coupled Multiple-Copy (LCMC) MD

Path-finding algorithms:

e.g., string method (SM or SMwST)

- Start from an initial string of N images (ζ_i)
- Restrain M copies of each image for time Δt

$$
U_i(\xi) = \frac{1}{2}k(\xi - \zeta_i)^2
$$

- Release the restraints and run for time $\Delta t'$
- New string (ζ_i) is determined from $\langle \xi \rangle_i$'s
- Iterate until converged
- Free energy calculations:

e.g., umbrella sampling (US or BEUS):

 $-$ Bias one or more (e.g., M) copies: $U_i(\boldsymbol{\xi})=$ 1 $\frac{1}{2} k(\xi - \zeta_i)^2$

– Use a reweighting scheme to unbias the data: $e^{-\beta E_i} = \left(\begin{array}{cc} e^{-\beta U_i(\xi^t)} & e^{-\beta U_i(\xi^t)} \end{array}\right)$

Shirts, Chodera, JCP*, 129*, 124105 (2008)

 $n_j e^{-\beta(U_j(\xi^t) - F_j)}$

j

∑

all samples

Riemannian Reformulation

• Riemannian reformulation of path-finding algorithms and free energy calculations methods such as SMwST/BEUS provides solutions for the minimum free energy path and its free energy that are **invariant under coordinate transformation.**

• The Riemannian formulation allows for developing **more robust** free energy calculation methods and path-finding algorithms (due to the **"invariance"** feature).

Fakharzadeh & Moradi, *Effective Riemannian diffusion model for conformational dynamics of biomolecular systems*. **J Phys Chem Lett.** 2016;7(24):4980-4987.

Communications , 185, 908, 2014.

Iteration $t+\delta t$

Iteration t - δt

Iteration t

pH-induced Activation of an Engineered Mechanosensitive Channel of Large Conductance (MscL)

PDB: 2OAR

TM Helices

MD Model

Arkansas BIOSCIENCES UNIVERSITY OF
ARKANSAS **INSTITUTE**

Biomolecular Simulations Group @ Department of Chemistry and Biochemistry

Protein Conformational Landscapes, Energetics, and Dynamics

Curtis Goolsby

Dylan Ogden

Hamid Tabari

Ugochi Isu

Vivek Govind Kumar

Adithya Polasa

Arkansas High Performance Computing Center

Extreme Science and Engineering Discovery Environment