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Materials Gap in Catalysis: Theory and Experiments

Physics + Data science[4] is needed to understand both dynamic changes[4] and
static properties of complex materials
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Materials Gap in Catalysis: Vibrational Spectroscopy

Infrared (IR) spectroscopy of dispersed Pt 
atoms and nanoparticles for CO oxidation[1]

2-D Infrared (IR) spectroscopy 
of a semiconductor[2]

• Vibrational spectroscopy is a precise (<1% uncertainties) 
surface technique that is rapidly advancing. 

• Spectra are relatively insensitive to temperature and can 
be used in-situ or operando[3]
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The Argument for CO as a Probe Molecule
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Exp. CO Frequency on Pt(111)[1]

Site-type Freq. [cm-1]

atop 2070

bridge 1830

fcc 1760

• C-O frequency depends on both site-type and site coordination
• C-O has well defined peaks that can be visually identified by the human eye and brain
• There are no quantitative methods to determine surface structure from vibrational spectra

C-O frequency (atop bound CO) vs. Pt CN (■)

Low coverage 
adsorption, at various 
temperatures[2]

ω=1,997 + 10.0CN cm-1



Outline
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Goal
• Determine local microstructure of Pt nanoparticles from experimental 

vibrational spectra using CO as a probe molecule
Plan
• Assess accuracy of DFT in recreating IR spectra
• Provide an overview of surrogate modeling
• Combine data science techniques with expert knowledge to better 

understand data and improve sampling, highlighting data visualization
• Illustrate key details of the surrogate models for generating synthetic IR 

spectra and learning the corresponding local structure 
• Show model results and provide an application to experimental 

vibrational spectra
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Frequency Scales with Generalized Coordination Number
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C-O stretch frequencies for CO at an atop site

Generalized Coordination 
Number (GCN) is a 
coordination number 
weighted by second nearest 
neighbors[1]

[1] F. Calle-Vallejo et al., Angew. Chem. Int. 
Ed. 53, 8316 (2014).

C-O frequency is a descriptor of local structure but in experiments we must untangle spectra 
generated from many CO molecules on many different GCNs – We need intensities!
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Compute Intensities using the derivative in dipole moment μ (dynamic dipole moment) 
with respect to the normal mode displacement (Q).[1]

• Normal mode (hessian of the forces) for identifying peak locations (frequencies)
• VASP[2] for computing electron densities
• CHARGEMOL[3] for integrating over the electron densities to get the dipoles
• Matrix product of the dipole Jacobian and the normal mode vectors to compute intensities
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Methods: Generating Spectra from First Principles
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IR Spectra of CO on Pt(111) with a c(4x2) Overlayer
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DFT generated spectra reproduces experimental spectra (frequencies and intensities)

1) Existing literature 
supports accuracy of 
measuring and computing 
frequencies on surfaces[1,2]

0.25 ML at 
the atop 
position

0.25 ML at 
the bridge 
positionPt-CO stretch 

frequency

2) There is not always a 
one-to-one 
correspondence between 
intensity and 
concentration

3) There are more 
frequencies than just the 
C-O stretch
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Surrogate Model Overview: Iterative Design

Simulated 
Spectra

Surrogate 
Spectral 
Model

Multinomial 
Regression

Local 
Structure

DFT Data
Synthesizing 
Spectra
• Outlier removal
• Harmonic approx.
• Lateral 

interactions
• Spectral mixing
• Convolution
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Surrogate Model Overview: Iterative Design

Simulated 
Spectra

Surrogate 
Spectral 
Model

Surrogate 
Structure 

Model

Local 
Structure

DFT Data
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Outliers inhibit learning 
both because they result in 
large gradients during 
training and because there 
are not enough samples 
with similar feature values 
to predict them.

Data Visualization: Site-type Data
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Removing samples that are not local minima on the potential energy surface applies 
expert knowledge to remove unphysical outliers

Data Visualization: Site-type Data
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Surrogate Model Details: The Activation Function
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Wasserstein loss with [0,0,0,1] for 
three probability sets compared to 
the single-valued kl-divergence

Surrogate Model Details: The Loss Function

Kl-divergence compares probabilities 
between two distributions at each 
index (pi and ti) while Wasserstein 
compares the cumulative 
probability at each index (CDF(P)i
and CDF(T)i) and takes into account 
inter-class relationships[1]
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3-fold and 
4-fold

Bridge

Atop

Model Results: Site-type Histogram
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GCN
group

GCN values

7 5.5-6.1
8 6.1-6.6
9 6.6-7.2
10 7.2-7.9
11 7.9-8.5

12

High
Coverage 
Low-index 
planes

Model Results: Generalized Coordination Histograms

GCN
group

GCN
values

1 0-1.8
2 1.8-2.8
3 2.8-3.7
4 3.7-4.3
5 4.3-4.9
6 4.9-5.5

GCN Groups Determined by Clustering
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or

Pt(111) c(4x2) 
0.5 ML[1]

Pt(110) 1 ML[2]

STM of 55 nm 
Au @0.7 nm 

Pt/Pt[3]

*A voltage of -0.1 V will only 
shift the C-O frequency by 
2.9 cm-1.[4]

CO saturated 
0.5 M H2SO4 at 

-0.1 V*

UHV

Experimental Application: Spectra from Literature
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Experimental Application: Expert Information

Pt(111) 
c(4x2) 0.5 

ML[1]

A combination of LEED and TPD measurements tell us that at 0.5 ML 
this c(4x2) overlayer results in 50% atop and 50% ridge sites. At high 
pressures this spectra could correspond 62% atop and 38% bridge.

Pt(111) 0.17 
ML[1]

Trends in LEED studies suggest at low coverages 
almost all CO is adsorbed at atop sites on Pt(111)

Pt(110) 1.0 
ML[2]

Pt(110) can undergo reconstruction, however, at the 
maximum coverage of 1 ML it is observed to deconstruct with 
all CO in the atop position.

or

STM of 55 nm 
Au @0.7 nm 

Pt/Pt[3]

Because the nanoparticle system is in liquid, coverages are low. This 
would preclude ordered high spatial overlayers of the low-index 
planes. The uniformity of the nanoparticles would suggest that most 
occupied sites are at a low-index plane of the same site. 
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High coverage 
low index 
planes

Pt(111) low 
coverage

The supposed high-coverage Pt(110) surface has significant 
4-fold contribution. This is unexpected.

Experimental Application: Predicted Histograms
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Slight 
bump

Extended 
tail

The parts of the spectra resulting in predicted adsorption at 4-fold sites for Pt(110) (yellow 
line) is likely due to the extended tail below 400 cm-1 and the slight bump at 1700 cm-1

Experimental Application: A New Insight



Conclusions
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• We are able to synthesize spectra with a surrogate 
model efficiently

• We successfully implemented a multinomial neural 
network to predict the proportion of occupied site-
types and GCN histograms of synthetic spectra

• We demonstrated the applicability of this model to 
experimental data

• We iteratively used data science tools and 
philosophies with expert knowledge to identify areas 
of our combined {target, feature} space that needed 
more data and to generalize our model to high 
coverage systems with varying convoluting functions
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Future Work on Blue Waters
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Transition State Theory and the Potential Energy Surface

local minima

Reactants
local minima

Products

Transition 
StateSaddle Point

ΔH‡

H: Enthalpy
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Transition State Theory and the Potential Energy Surface

local minima

local minima

Transition 
State

Reactants

Products

Saddle Point

ΔG‡

𝐺 = 𝐻 − 𝑇𝑆 [1]

𝑆 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑠)

H: Enthalpy
G: Gibbs Energy
S:  Entropy
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Transition State Theory Computational Complexity

𝑂 𝑁2

𝑂 𝑁2

𝑂 𝑁2

𝑂 𝑁i

Vibrational 
Calculations
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Outline of Future Work
Issues with the current technique for addressing the materials gap
1. Need more data 
2. Frequency calculations are very slow! 

• The electronic density distribution completely specifies the energy of a chemical system’s 
state and can be calculated using density functional theory (DFT) based on the Kohn Sham 
equation[1]

• Frequencies at equilibrium can be computed directly from equilibrium (ground state) 
electron density[2]

Combining geometric and electronic density information we should be able to generate a 
chemical representation that facilitates extrapolation. 

1. Need more data – automatic structure generation for generative adversarial networks
2. Frequency calculations are very slow! – deep neural networks trained on electron density
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