

Electron Density-Based Machine Learning for Accelerating Quantum Calculations

Joshua Lansford and D. G. Vlachos

2019 Blue Waters Symposium, Sunriver OR June 5, 2019

Materials Gap in Catalysis: Theory and Experiments

Physics + Data science^[4] is needed to understand both dynamic changes^[4] and static properties of complex materials

[1] J. Feng, and J. L. Lansford et al. AIP Adv. 8, 035021 (2018). [2] M. Núñez, J. L. Lansford, and D.G. Vlachos, Nat. Chem. - Under Review [3] Liu et al., ACS Cat (2018) [4] C. A. Koval et al., *Basic Research Needs: Catalysis Science to Transform Energy Technologies* 2017). 2

[3]

Materials Gap in Catalysis: Vibrational Spectroscopy

Frequency ω (cm⁻¹⁾

Infrared (**IR**) spectroscopy of dispersed Pt atoms and nanoparticles for CO oxidation**[1]**

- **Vibrational spectroscopy is a precise (<1% uncertainties) surface technique that is rapidly advancing.**
- **Spectra are relatively insensitive to temperature and can be used in-situ or operando[3]**

[1] K. Ding et al., Science **350**, 189 (2015). [2] F. Huth et al., Nature Materials **10**, 352 (2011). [3] J. F. Li *et al.*, Nature 464, 392 (2010).

The Argument for CO as a Probe Molecule

- **C-O frequency depends on both site-type and site coordination**
- **C-O has well defined peaks that can be visually identified by the human eye and brain**
- **There are no quantitative methods to determine surface structure from vibrational spectra**

Outline

Goal

• Determine local microstructure of Pt nanoparticles from experimental vibrational spectra using CO as a probe molecule

Plan

- Assess accuracy of DFT in recreating IR spectra
- Provide an **overview of surrogate modeling**
- Combine **data science techniques** with **expert knowledge** to better understand data and improve sampling, highlighting **data visualization**
- Illustrate **key details** of the **surrogate models** for generating **synthetic IR spectra** and **learning the corresponding local structure**
- Show **model results** and provide an **application to experimental vibrational spectra**

Frequency Scales with Generalized Coordination Number

Generalized Coordination Number (GCN) is a coordination number weighted by second nearest neighbors**[1]**

$$
\overline{CN}(i) = \sum_{j=1}^{n_i} \text{cn}(j)n_j / \text{cn}_{\text{max}}
$$

[1] F. Calle-Vallejo et al., Angew. Chem. Int. Ed. 53, 8316 (2014).

C-O frequency is a descriptor of local structure but **in experiments** we must **untangle spectra** generated from **many CO molecules on many different GCNs – We need intensities!**

Compute Intensities using the derivative in dipole moment **μ** (**dynamic dipole moment**) with **respect to the normal mode displacement (Q)**. **[1]**

$$
I_i^{\text{IR}} = \frac{\mathcal{N}\pi}{3c} \left| \frac{d\mu}{dQ_i} \right|^2 \qquad \qquad \frac{d\mu}{dQ_i} = \sum_{k=1}^{3N} \frac{\partial \mu}{\partial R_k} X_{ki}
$$

- Normal mode (hessian of the forces) for identifying peak locations (frequencies)
- VAS $P^{[2]}$ for computing electron densities
- CHARGEMOL[3] for integrating over the electron densities to get the dipoles
- Matrix product of the dipole Jacobian and the normal mode vectors to compute intensities

- [2] G. Kresse and J. Furthmüller, Phys. Rev. B. **54**, 11169 (1996).
- [3] T. A. Manz and N. G. Limas, RSC Advances **6**, 47771 (2016). 7

^[1] Porezag and Pederson. Phys. Rev. B. 54, 11 (1996)

IR Spectra of CO on Pt(111) with a c(4x2) Overlayer

DFT generated spectra reproduces experimental spectra (frequencies and intensities)

- [1] I. Dabo et al., J. Am. Chem. Soc. **129**, 11045 (2007).
- [2] J. L. Lansford, A. V. Mironenko, and D. G. Vlachos, Nature Communications **8**, 1842 (2017).
- Infrared-spectroscopy Data- and Physics-driven Machine Learning Reveal Surface Microstructure of Complex Materials submitted

Surrogate Model Overview: Iterative Design

Surrogate Model Overview: Iterative Design

Infrared-spectroscopy Data- and Physics-driven Machine Learning Reveal Surface Microstructure of Complex Materials - submitted 10

Outliers inhibit learning both because they result in **large gradients during training** and because there are **not enough samples with similar feature values** to predict them.

Data Visualization: Site-type Data

Removing samples that are **not local minima** on the potential energy surface applies **expert knowledge** to **remove unphysical outliers**

Surrogate Model Details: The Loss Function

$$
W^{2} = \sum_{n=1}^{C} \left[\sum_{i=1}^{n} p_{i} - \sum_{i=1}^{n} t_{i} \right]^{2}
$$

Kl-divergence compares probabilities between two distributions at each index (p_i and t_i) while **Wasserstein compares the cumulative** probability at each index (CDF(P)_i and CDF(T)_i) and takes into account **inter-class relationships[1]**

Infrared-spectroscopy Data- and Physics-driven Machine Learning Reveal Surface Microstructure of Complex Materials - submitted [1] L. Hou, C.-P. Yu, and D. Samaras, arXiv preprint arXiv:1611.05916 (2016). 14

Model Results: Site-type Histogram

Model Results: Generalized Coordination Histograms

Experimental Application: Spectra from Literature

Experimental Spectroscopy

- [1] H. Steininger, S. Lehwald, and H. Ibach, Surf. Sci. **123**, 264 (1982). [2] C. Klünker et al., Surf. Sci. **360**, 104 (1996).
- [3] P. Zhang et al., J. Phys. Chem. C **113**, 17518 (2009).
- [4] W. Chen et al., J. Phys. Chem. B **107**, 9808 (2003). 17

*A voltage of -0.1 V will only shift the C-O frequency by 2.9 cm-1. **[4]**

Experimental Application: Expert Information

Pt(111) c(4x2) 0.5 ML**[1]**

Pt(111) 0.17 ML**[1]**

Because the nanoparticle system is in liquid, coverages are low. This would preclude ordered high spatial overlayers of the low-index planes. The uniformity of the nanoparticles would suggest that most occupied sites are at a low-index plane of the same site.

[1] H. Steininger, S. Lehwald, and H. Ibach, Surf. Sci. **123**, 264 (1982).

[2] S. Karakatsani, et al., Surf. Sci. **606**, 383 (2012).

[3] P. Zhang et al., J. Phys. Chem. C **113**, 17518 (2009). 18

A combination of LEED and TPD measurements tell us that at 0.5 ML this c(4x2) overlayer results in 50% atop and 50% ridge sites. At high pressures this spectra could correspond 62% atop and 38% bridge.

Trends in LEED studies suggest at low coverages almost all CO is adsorbed at atop sites on Pt(111)

Pt(110) can undergo reconstruction, however, at the maximum coverage of 1 ML it is observed to deconstruct with all CO in the atop position.

Experimental Application: Predicted Histograms

The supposed high-coverage Pt(110) surface has significant

4-fold contribution. **This is unexpected.**

The parts of the spectra resulting in predicted adsorption at 4-fold sites for Pt(110) (yellow line) is likely due to the **extended tail below 400 cm-1** and the **slight bump at 1700 cm-1**

Conclusions

- We are able to synthesize spectra with a surrogate model efficiently
- We successfully implemented a multinomial neural network to predict the proportion of occupied sitetypes and GCN histograms of synthetic spectra
- We demonstrated the applicability of this model to experimental data
- We iteratively used data science tools and philosophies with expert knowledge to identify areas of our combined {target, feature} space that needed more data and to generalize our model to high coverage systems with varying convoluting functions

1980

2000

2020

C-O frequency

2040

2060

Future Work on Blue Waters

[1] J. Feng, and J. L. Lansford et al. AIP Adv. 8, 035021 (2018). [2] M. Núñez, J. L. Lansford, and D.G. Vlachos, Nat. Chem. (2019) [3] M. Salciccioli et al., Chem. Eng. Sci. 66, 4319 (2011). [4] H. Pritchard, J. Phys. Chem. A. (2005). 22

Transition State Theory and the Potential Energy Surface

[1] D.A. McQarrie, Statistical Mechanics, University Science Books (2000). 24

Transition State Theory Computational Complexity

- Issues with the current technique for addressing the materials gap
- 1. Need more data
- 2. Frequency calculations are very slow!
- The electronic density distribution completely specifies the energy of a chemical system's state and can be calculated using density functional theory (DFT) based on the Kohn Sham equation^[1]
- Frequencies at equilibrium can be computed directly from equilibrium (ground state) electron density^[2]

Combining geometric and electronic density information we should be able to generate a chemical representation that facilitates extrapolation.

- 1. Need more data automatic structure generation for generative adversarial networks
- 2. Frequency calculations are very slow! deep neural networks trained on electron density

Acknowledgements

Funding from DARPA and RAPID and funding from the Blue Waters Graduate Fellowship for the next phase of my work

Professor Dionisios G. Vlachos for advisement

The Vlachos group