

Spectral/Discontinuous Galerkin approach to fully kinetic simulations of plasma turbulence with reduced velocity space

 $\begin{array}{c} \mbox{O. Koshkarov}^1 \\ \mbox{V. Roytershteyn}^2 \mbox{(PI)} & \mbox{G. L. Delzanno}^1 & \mbox{G. Manzini}^1 \end{array}$

¹Los Alamos National Laboratory

²Space Science Institute

We used Blue Waters to study plasma turbulence NSF PRAC project #1614664

- Plasma is pervasive in nature and laboratory
- Plasma is often in turbulent state
- Turbulence is hard (a lot of scales)
- Solar wind is the best accessible example of astrophysical plasma turbulence
- The project goal was to study solar wind turbulence numerically in challenging regimes (close to the sun)
- The project is at end
- Next steps new tools (today's topic)

Vlasov-Maxwell system (VMS)

Microscopic description of collisionless plasmas

$$\partial_t f_{\alpha} + \mathbf{v} \cdot \nabla f_{\alpha} + \frac{q_{\alpha}}{m_{\alpha}} \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) \cdot \nabla_{\mathbf{v}} f_{\alpha} = 0$$

$$\partial_t \mathbf{E} = c \nabla \times \mathbf{B} - 4\pi \mathbf{j}, \qquad \partial_t \mathbf{B} = -c \nabla \times \mathbf{E},$$

$$abla \cdot \mathbf{E} = 4\pi
ho, \quad
abla \cdot \mathbf{B} = 0,$$
 $ho = \sum_{\alpha} q_{\alpha} \int f_{\alpha} d^3 v, \quad \mathbf{j} = \sum_{\alpha} \int f_{\alpha} \mathbf{v} d^3 v,$

where $f_{\alpha} = f_{\alpha}(t, \mathbf{r}, \mathbf{v})$, $\mathbf{E} = \mathbf{E}(t, \mathbf{r})$, $\mathbf{B} = \mathbf{B}(t, \mathbf{r})$.

10⁶ km hours MACRO SYSTEM scales 10⁵ km 1 m 10³ km 15 ION scales 10² km 10-3 s 10⁹ km 10-4 6 ELECTRON MICRO scales 10⁻¹ km 10.5 .

Parameters of the Earth magnetotail, from *Lapenta, JCP 2012*

VMS is very difficult to solve!

 $6D + time \star nonlinear \star anisotropic \star multi-scale$

Numerical methods for VMS

- Particle-in-cell (PIC) standard method
 - Phase space discretization with macroparticles
 - Simple, robust, statistical noise, low accuracy, mostly explicit
- Eulerian Vlasov solvers
 - Phase space discretization with grid
 - No statistical noise
 - Require a lot of resources: 1000^6 grid points = 8 exabyte
- Transform methods focus of this talk
 - Phase space discretization with spectral (moment) expansion
 - Fourier, Hermite basis Armstrong et al., 70
 - Memory requirement/slow convergence might be an issue, but *Schumer & Holloway, 98; Camporeale et al, 06* showed that the Hermite basis can be optimized
 - Major advantage (for AW Hermite and Legendre basis): Naturally bridges between fluid (few number of moments) and kinetic (large number of moments). Optimal way to include microscopic physics in large-scale simulations? (c.f., PIC-MHD coupling)

Spectral plasma solver framework

• Galerkin spectral expansion for velocity space

$$f(t,x,v) = \sum_{n} C_{n}(t,x) \Psi_{n}\left(\frac{v-\alpha}{u}\right),$$

- Asymmetrically weighted Hermite polynomials
- Natural fluid(macroscopic)-kinetic(microscopic) coupling
- Usually small number of DOF is needed
- Discontinuous Galerkin expansion for coordinate space

$$C_n(t,x) = \sum_{l,k} C_{k,n}^l(t) \Phi_k^l(x),$$

- Very accurate arbitrary order
- Shocks and nontrivial geometry
- Good parallel scaling
- Advance the resulted system with explicit or implicit time integration scheme.
 - Explicit very fast for some problems
 - Implicit can skip scales, conserves energy

Spectral plasma solver framework

Other discretizations

Velocity space

	Fluid coupling	Conservation properties	Stability
AW Hermite	٢	٢	
SW Hermite	\odot		\odot
Legendre	٢	☺/ ☺	☺/ ☺

- Coordinate space
 - · Pseudo spectral method based on Fourier modes
 - $\star\,$ More than perfect when you fit into one node
 - Discontineous Galerkin
 - * Great so far perfect scalability, mass/energy conservation, arbitrary order, somewhat heavy with small CFL
 - Finite volume
 - $\star\,$ Similar to DG, but with different compromises

Spectral plasma solver framework

Note on implementation

DG-Hermite decomposition of full Vlasov-Maxwell system:

- Distributed memory based 3D3V SPS-MPI via PETSc
- Explicit time discretization (Family of different Runge-Kutta's)
- Implicit time discretization (conserves energy implicit mid point)
 - Non-linear solver: JFNK + GMRES/BCGS
 - Preconditioning (PILU from Hyper, Block Jacobi) memory optimization is in progress

Other approaches to space discretization

- Fourier + Hermite (efficient openMP based 2D3V and MPI based 3D3V)
- Finite volume/difference + Hermite
- Legendre: Vlasov Poisson system (proof of concepts)
- SW Hermite: Vlasov Poisson system (proof of concepts)

Conclusion

Parallel efficiency

 2D3V Orszag-Tang vortex test with explicit time integrator scales very well up to 50000 DOF per core

Results

Conclusion

Example

2D Plasma turbulence: Orszag-Tang vortex

• Excite two large scale flow vortices and let them evolve to form small scale structures

- SPS resolution: $N_x N_y = 512^2$, $N_{vx} N_{vy} N_{vz} = 10^3$
- PIC resolution: $N_x N_y = 3520^2$, $N_p = 4000$

Orszag-Tang vortex test

Spectrum and energy

- Omnidirectional spectrum of magnetic field fluctuations
 - SPS is noiseless, but has numerical diffusion when spatial resolution is not sufficient
- Electromagnetic energy is consistent even with reduced velocity space

Results

Conclusion

- Spectral Plasma Solver (SPS) is a unique framework to study kinetic multi-scale plasma physics problems
 - Built-in fluid/kinetic coupling is efficient way to incorporate microscopic physics
 - Reduced velocity space is able to reproduce important microscopic physics
 - Mass, and energy conserving accurate long time integration
 - Flexible time discretization implicit or explicit as needed
 - Flexible spatial discretization (nontrivial boundary conditions)
 - Great parallel scalability (c.f. pure spectral methods)