First-principles study of voltage-induced switching, optical properties, and heat capacity of antiferromagnetic metals

Kisung Kang (Project PI: André Schleife)

University of Illinois, Urbana Champaign Material Science and Engineering BW Symposium, 2019

Introduction

1) Motivation

Magnetic Moment, Spin

- (1) Two different directions
- 2) Controllable by stimulation

Hard Drives

Adapted from: www.igcseict.info, hyperphysics.phy-astr.gsu.edu

Why Antiferromagnetic Materials?

(1) Robust to external magnetic field

Easily Affected

(2) Fast Dynamics

THz Response

(3) No Stray Field

No effect

Introduction

2) Projects

Project 1

Voltage-induced switching of antiferromagnetic semimetal

- Order parameter switching can causes band gap opening
- Model Hamiltonian for symmetry study
- Density functional theory (DFT) to investigate antiferromagnetic semimetals

Project 2

Optical and thermal properties of antiferromagnetic metallic Fe₂As

- Linear magneto-optical Kerr effect (MOKE) from antiferromagnetic metal under external magnetic field is predicted
- Relationship between quadratic MOKE and heat capacity is confirmed

1) Background and Theory

(1) Antiferromagnetic Semimetal (AFS)

- $\mathcal{P}\mathcal{T}$ symmetry may be preserved with an extra nonsymmorphic crystal symmetry
- Under satisfying condition, reorientation of spin configuration may break underlying symmetry and change the gap of Dirac fermion
- This may be detected by electronic transport response of AFS and become potential novel platform for spintronic applications

(2) (Semi)metal-insulator transition (MIT)

1. Two-fold degeneracy: Combined inversion (\mathcal{P}) and time-reversal (\mathcal{T}) symmetry $\Rightarrow \mathcal{PT}$ Symmetry

$$\mathbf{k}, \mathbf{s} \xrightarrow{\mathcal{T}} -\mathbf{k}, -\mathbf{s} \xrightarrow{\mathcal{P}} \mathbf{k}, -\mathbf{s}$$

Protected Dirac point: Depending on additional symmetry and reciprocal space

level-repulsion

Protected crossing

$$H = \begin{pmatrix} \mathbf{k} \cdot \mathbf{\sigma} & m \\ m & -\mathbf{k} \cdot \mathbf{\sigma} \end{pmatrix} \qquad H = \begin{pmatrix} \mathbf{k} \cdot \mathbf{\sigma} & m \\ m & -\mathbf{k} \cdot \mathbf{\sigma} \end{pmatrix}$$

$$H = \begin{pmatrix} \mathbf{k} \cdot \mathbf{\sigma} & \mathbf{m} \\ \mathbf{m} & -\mathbf{k} \cdot \mathbf{\sigma} \end{pmatrix}$$

2) Example

PT symmetry + Additional symmetry:

Non-symmorphic glide-reflectional symmetry

$$(x, y, z)$$

 (s_x, s_y, s_z)

$$(-x, y, z)$$

 $(s_x, -s_y, -s_z)$

$$\begin{array}{ccc}
(x, y, z) & \mathcal{M}_{\chi} & (-x, y, z) & T_{\chi} & (-x + \frac{1}{2}, y, z) \\
(s_{\chi}, s_{y}, s_{z}) & (s_{\chi}, -s_{y}, -s_{z}) & (s_{\chi}, -s_{y}, -s_{z})
\end{array}$$

when $\hat{n}||[100] \rightarrow \text{preserved}$

Protected crossing

when $\hat{n}||[010] \rightarrow \text{broken}$

level-repulsion

3) Model Hamiltonian Study

viouei Haillitoillaii Stu

Tight binding model in momentum space presents that gapped or gapless state is determined by orientation of antiferromagnetic order parameters.

4) Density Functional Theory (DFT) Study

Kang Schleife

DFT calculates electronic band structure of orthorhombic CuMnAs and finds the states changes in terms of Néel vector.

5) New Switching Process Prediction

Voltage-induced switching

- By tuning the chemical potential, anisotropy energy can be changed.
- Thus, MIT can occur by tuning the chemical potential

$$K_i(\mu) = \frac{F_{\to} - F_{\uparrow}}{V} \propto -\frac{1}{4v_F^3} \left(m^2 (v_F k_C)^2 - \frac{\mu^4}{3} \right)$$

6) Why Blue Waters?

Total Energy Convergence Test

Computational Details

- Implemented by Vienna *ab initio* simulation package (VASP)
- Generalized-gradient approximation by Perdew, Burke, and Ernzerhof (PBE) for exchange and correlation description with plane kinetic cutoff energy of 600 eV
- k-points mesh grid gradually increases up to $22 \times 44 \times 22$ (total 21296 points)
- Noncollinear magnetism and spin-orbit coupling effect are included
- Each calculation requires about 3000 node hours with 140 GB memory

Introduction

2) Projects

Project 1

Voltage-induced switching of antiferromagnetic semimetal

- Order parameter switching can causes band gap opening
- Model Hamiltonian for symmetry study
- Density functional theory (DFT) to investigate antiferromagnetic semimetals

Project 2

Optical and thermal properties of antiferromagnetic metallic Fe₂As

- Linear magneto-optical Kerr effect (MOKE) from antiferromagnetic metal under external magnetic field is predicted
- Relationship between quadratic MOKE and heat capacity is confirmed

1) Background and Theory

Linear Magneto-Optical Kerr Effect (Linear MOKE)

[Ferromagnetic Case]

[Antiferromagnetic Case]

How to utilize optical detection for antiferromagnets?

Linear MOKE under external magnetic field

- Spin-tilted state calculation
- Electronic band structure
- Dielectric function

Optical property

Quadratic MOKE

- Related to magnetic heat capacity
- Experiments cannot decompose heat capacity contribution of electron, phonon and magnon

Thermal property

2) Magnetic Ground State

Lattice Parameters

Fe ₂ As	a (Å)	b (Å)	c (Å)
DFT	3.624	3.624	11.724
Exp. [1]	3.630	3.630	11.96
Δ (%)	-0.17	-0.17	-1.97

Magnetic Moments

Reflectivity of Fe₂As

[1] H. Katsuraki et al. J. Phys. Soc. Jpn. 21, 2238 (1966)

3) Band Dispersion Study

Electronic Band structure

- Dielectric function
- Linear MOKE rotation and ellipticity signals
- Electron heat capacity

Phonon Band structure

- Phonon heat capacity

4) Linear MOKE study

Spectral Results

$$\Psi_K(\omega) = \theta_K(\omega) + i\gamma_K(\omega) = \frac{-\varepsilon_{xy}(\omega)}{(\varepsilon_{xx}(\omega) - 1)\sqrt{\varepsilon_{xx}(\omega)}}$$
 Rotation Ellipticity of reflected light

Kerr Rotation at 793 nm (1.56 eV)

This can be the guidance to experimentalist to find the wavelength to maximum the MOKE response

5) Quadratic MOKE study

 C_{tot} , $\frac{\Delta\Theta}{\Delta T}$ from Experiment

Yang

Cahill

 C_e and C_{ph} from DFT

Kang

Schleife

Quadratic MOKE response

5) Quadratic MOKE study

C_{tot} , $\frac{\Delta\Theta}{\Delta T}$ from Experiment

Yang

Cahill

 C_e and C_{ph} from DFT

Kang

Schleife

Heat Capacity Analysis

$$C_m = C_{tot} - C_e - C_{ph}$$

Magnetic heat capacity can be extracted.

Quadratic MOKE response

5) Quadratic MOKE study

C_{tot} , $\frac{\Delta\Theta}{\Delta T}$ from Experiment

Yang

Cahill

 C_e and C_{ph} from DFT

Kang

Schleife

Heat Capacity Analysis

$$C_m = C_{tot} - C_e - C_{ph}$$

Magnetic heat capacity can be extracted.

Quadratic MOKE response

Quadratic MOKE response is dominantly related to magnetic heat capacity (C_m)

6) Why Blue Waters?

Computational Details

- Implemented by Vienna ab initio simulation package (VASP)
- Generalized-gradient approximation by Perdew, Burke, and Ernzerhof (PBE) for exchange and correlation description with plane kinetic cutoff energy of 500 eV

- Total atoms are **108 atoms** (72 Fe atoms and 36 As atoms)
- Noncollinear magnetism and spin-orbit coupling effect are included
- k-points in Brillouin zone is sampled by $4 \times 4 \times 4$ mesh grid
- Instead of one long calculation in Density Functional Perturbation Theory,
 Phonopy provides 6 displacements calculations which is suitable with in wall time.
- Each calculation requires around **2700 node hours with 53 GB memory**.
- Total wavefunctions occupy **8.4 TB** storage space.

Phonopy

Conclusion

1) Summary

- (Semi)metal-insulator transition in specific symmetry condition can happen through reorientation of antiferromagnetic order parameter
- Voltage-induced switching is predicted by model Hamiltonian study and confirmed by DFT in orthorhombic CuMnAs
- Linear MOKE signal generation from antiferromagnetic Fe₂As under external magnetic field is predicted by DFT and confirmed by experiment
- Magnetic heat capacity extracted by combination of measurement and calculation presents close relationship with quadratic MOKE signal

Spin Tilting Calculation: M₂As (M= Cr, Mn, Fe)

3) Magnetic Susceptibility

[1] M. Yuzuri, J. Phys. Soc. Jpn. 15, 2007 (1960)
[2] M. Yuzuri et al. J. Phys. Soc. Jpn. 15, 1845 (1960)
[3] H. Katsuraki et al. J. Phys. Soc. Jpn. 21, 2238 (1966)

Mn₂As

Fe₂As

Effective Exchange Parameters [4]

[4] Y. Zhang et al. Inorg. Chem. **52**, 3013 (2013)

(meV)	Cr ₂ As	Mn ₂ As	Fe ₂ As
J_{M1-M1}	-14.1	-1.68	+25.4
J_{M1-M2}	-7.85, -12.8	-14.5	+6.52
J'_{M2-M2}^{a}	+1.83	-19.6	-3.52
J'_{M2-M2}^{b}	-6.02	-0.70	+8.52

Antiferromagnetic Coupling

Ferromagnetic Coupling

Polar Magneto-Optical Kerr Effect (PMOKE) : M₂As

5) Tilting Angle Dependence of ES and SOC

$$\Delta \bar{E}^{ES} = \sum_{\vec{k},i} \frac{\left| E^{maj.}(\vec{k},i) - E^{min.}(\vec{k},i) \right|}{N_{\vec{k}}N_{i}}, \ \Delta \bar{E}^{SOC} = \sum_{\vec{k},i} \frac{\left| E^{SOC}(\vec{k},i) - E^{woSOC}(\vec{k},i) \right|}{N_{\vec{k}}N_{i}}$$

where \vec{k} is k-point in first Brillouin Zone, i is band index $N_{\vec{k}}$ is number of k-point in first BZ, N_i is number of bands $E^{maj.}(\vec{k},i)$ is majority spin energy of i^{th} band at \vec{k} $E^{min.}(\vec{k},i)$ is minority spin energy of i^{th} band at \vec{k} $E^{SOC}(\vec{k},i)$ is energy of i^{th} band at \vec{k} with SOC $E^{woSOC}(\vec{k},i)$ is energy of i^{th} band at \vec{k} w/o SOC

As net magnetization arises,

- (1) average energy of exchange splitting increases and
- (2) average energy of spin-orbit coupling does not change.

PMOKE signal change from AFM M₂As under external magnetic field is mostly originated from exchange splitting effect change.