communication-optimal QR factorizations: performance and scalability on varying architectures

Edward Hutter and Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

Blue Waters Symposium 2019

 $\alpha-\beta-\gamma \, \operatorname{cost} \, \operatorname{model}$

- $\blacksquare \ \alpha$ cost to send zero-byte message
- \blacksquare β cost to inject byte of data into network
- \blacksquare γ cost to perform flop with register-resident data

 $\alpha-\beta-\gamma \, \operatorname{cost} \, \operatorname{model}$

- $\blacksquare \ \alpha$ cost to send zero-byte message
- \blacksquare β cost to inject byte of data into network
- \blacksquare γ cost to perform flop with register-resident data

Architectural trend: $\alpha \gg \beta \gg \gamma$

 $\alpha-\beta-\gamma \, \operatorname{cost} \, \operatorname{model}$

- $\blacksquare \ \alpha$ cost to send zero-byte message
- \blacksquare β cost to inject byte of data into network
- \blacksquare γ cost to perform flop with register-resident data

Architectural trend: $\alpha \gg \beta \gg \gamma$

Communication-avoiding algorithms for **most** dense matrix factorizations present in numerical libraries

 $\alpha-\beta-\gamma \, \operatorname{cost} \, \operatorname{model}$

- $\blacksquare \ \alpha$ cost to send zero-byte message
- \blacksquare β cost to inject byte of data into network
- \blacksquare γ cost to perform flop with register-resident data

Architectural trend: $\alpha \gg \beta \gg \gamma$

Communication-avoiding algorithms for **most** dense matrix factorizations present in numerical libraries

Goal: A QR factorization algorithm that prioritizes minimizing synchronization and communication cost

 $\alpha-\beta-\gamma \, \operatorname{cost} \, \operatorname{model}$

- $\blacksquare \ \alpha$ cost to send zero-byte message
- \blacksquare β cost to inject byte of data into network
- \blacksquare γ cost to perform flop with register-resident data

Architectural trend: $\alpha \gg \beta \gg \gamma$

Communication-avoiding algorithms for **most** dense matrix factorizations present in numerical libraries

Goal: A QR factorization algorithm that prioritizes minimizing synchronization and communication cost

Our team uses BlueWaters to assess the scalability of new algorithms for numerical tensor algebra at massively large scale

machine	launch year	peak node perf (Gflops/s)	peak injection bandwidth (Gwords/sec)	machine balance (words/flop)
ASCI Red	1997	0.666	0.4	1/1.665
ANL BG/P	2007	13.6	1	1/13.6
ONL Jaguar	2009	124.8	2.2	1/56
ANL BG/Q	2012	205	2	1/102.5
NCSA BlueWaters (XE)	2012	313.6	9.6	1/32
NCSA BlueWaters (XK)	2012	1320	9.6	1/137.5
ORNL Titan	2013	1320	8	1/165
ANL Theta	2017	3000+	10.2	1/294
TACC Stampede2	2017	3000+	12.5	1/240
LLNL Sierra	2018	28000	12.5	1/2240
ORNL Summit	2018	44000	12.5	1/3520

machine	launch year	peak node perf (Gflops/s)	peak injection bandwidth (Gwords/sec)	machine balance (words/flop)
ASCI Red	1997	0.666	0.4	1/1.665
ANL BG/P	2007	13.6	1	1/13.6
ONL Jaguar	2009	124.8	2.2	1/56
ANL BG/Q	2012	205	2	1/102.5
NCSA BlueWaters (XE)	2012	313.6	9.6	1/32
NCSA BlueWaters (XK)	2012	1320	9.6	1/137.5
ORNL Titan	2013	1320	8	1/165
ANL Theta	2017	3000+	10.2	1/294
TACC Stampede2	2017	3000+	12.5	1/240
LLNL Sierra	2018	28000	12.5	1/2240
ORNL Summit	2018	44000	12.5	1/3520

Higher arithmetic intensity →higher performance on new architectures

machine	launch year	peak node perf (Gflops/s)	peak injection bandwidth (Gwords/sec)	machine balance (words/flop)
ASCI Red	1997	0.666	0.4	1/1.665
ANL BG/P	2007	13.6	1	1/13.6
ONL Jaguar	2009	124.8	2.2	1/56
ANL BG/Q	2012	205	2	1/102.5
NCSA BlueWaters (XE)	2012	313.6	9.6	1/32
NCSA BlueWaters (XK)	2012	1320	9.6	1/137.5
ORNL Titan	2013	1320	8	1/165
ANL Theta	2017	3000+	10.2	1/294
TACC Stampede2	2017	3000+	12.5	1/240
LLNL Sierra	2018	28000	12.5	1/2240
ORNL Summit	2018	44000	12.5	1/3520

Higher arithmetic intensity \rightarrow higher performance on new architectures

BlueWaters not a favorable machine for communication-avoiding algorithms

3D algorithms utilize available extra memory to reduce communication asymptotically.

3D algorithms utilize available extra memory to reduce communication asymptotically.

We introduce CA-CQR2, a novel practical 3D QR factorization algorithm

3D algorithms utilize available extra memory to reduce communication asymptotically.

We introduce CA-CQR2, a novel practical 3D QR factorization algorithm

• extends CholeskyQR2 algorithm to arbitary $m \times n$ matrices across P processes

3D algorithms utilize available extra memory to reduce communication asymptotically.

We introduce CA-CQR2, a novel practical 3D QR factorization algorithm

• extends CholeskyQR2 algorithm to arbitary $m \times n$ matrices across P processes

• requires $\mathcal{O}\left(\left(Pm^2/n^2\right)^{1/6}\right)$ less communication than known 2D QR algorithms

3D algorithms utilize available extra memory to reduce communication asymptotically.

We introduce CA-CQR2, a novel practical 3D QR factorization algorithm

- extends CholeskyQR2 algorithm to arbitary $m \times n$ matrices across P processes
- \blacksquare requires $\mathcal{O}\left(\left(Pm^2/n^2\right)^{1/6}\right)$ less communication than known 2D QR algorithms

incurs a number of (increasingly profitable) tradeoffs

- 2 4x more flops than Householder QR)
- matrix must be sufficiently well-conditioned
- requires $\mathcal{O}\left((\mathbf{Pm}/\mathbf{n})^{1/3}\right)$ more memory than known 2D QR algorithms

3D algorithms utilize available extra memory to reduce communication asymptotically.

We introduce CA-CQR2, a novel practical 3D QR factorization algorithm

- extends CholeskyQR2 algorithm to arbitary $m \times n$ matrices across P processes
- \blacksquare requires $\mathcal{O}\left(\left(Pm^2/n^2\right)^{1/6}\right)$ less communication than known 2D QR algorithms
- incurs a number of (increasingly profitable) tradeoffs
 - 2 4x more flops than Householder QR)
 - matrix must be sufficiently well-conditioned
 - requires $\mathcal{O}\left((\mathbf{Pm}/\mathbf{n})^{1/3}\right)$ more memory than known 2D QR algorithms

All algorithms will be measured along the critical path instead of a volume measure

3D algorithms utilize available extra memory to reduce communication asymptotically.

We introduce CA-CQR2, a novel practical 3D QR factorization algorithm

- extends CholeskyQR2 algorithm to arbitary $m \times n$ matrices across P processes
- \blacksquare requires $\mathcal{O}\left(\left(Pm^2/n^2\right)^{1/6}\right)$ less communication than known 2D QR algorithms
- incurs a number of (increasingly profitable) tradeoffs
 - 2 4x more flops than Householder QR)
 - matrix must be sufficiently well-conditioned
 - requires $\mathcal{O}\left((\mathbf{Pm}/\mathbf{n})^{1/3}\right)$ more memory than known 2D QR algorithms

All algorithms will be measured along the critical path instead of a volume measure

Figure: Horizontal (internode network) communication along critical path

Edward Hutter and Edgar Solomonik

Strong Scaling: Stampede2 and BlueWaters, m/n=4096

Figure: Strong scaling for $m \times n$ matrices

Strong Scaling on Stampede2 and BlueWaters, m/n=512

Figure: Strong scaling for $m \times n$ matrices

Figure: Strong scaling for $m \times n$ matrices

Figure: Strong scaling for $m \times n$ matrices

Figure: Strong scaling for $m \times n$ matrices

ScaLAPACK's PGEQRF is communication-optimal assuming minimal memory (2D)

$$T_{\mathsf{PGEQRF}}^{\alpha,\beta} = \mathcal{O}\left(n\log P \cdot \alpha + \frac{mn}{\sqrt{P}} \cdot \beta\right) \qquad \qquad M_{\mathsf{PGEQRF}} = \mathcal{O}\left(\frac{mn}{P}\right)$$

 $^{^1}$ J. Demmel et al., "Communication-optimal Parallel and Sequential QR and LU Factorizations", SISC 2012

²A. Tiskin, "Communication-efficient generic pairwise elimination", Future Generation Computer Systems 2007

³E. Solomonik et al., "A communication-avoiding parallel algorithm for the symmetric eigenvalue problem", SPAA 2017

⁴G. Ballard et al., "A 3D Parallel Algorithm for QR Decomposition", SPAA 2018

⁵E. Hutter et al., "Communication-avoiding CholeskyQR2 for rectangular matrices", IPDPS 2019

ScaLAPACK's PGEQRF is communication-optimal assuming minimal memory (2D)

$$T_{\mathsf{PGEQRF}}^{\alpha,\beta} = \mathcal{O}\left(n\log P \cdot \alpha + \frac{mn}{\sqrt{P}} \cdot \beta\right) \qquad \qquad M_{\mathsf{PGEQRF}} = \mathcal{O}(\frac{mn}{P})$$

CAQR factors panels using TSQR to reduce synchronization¹ (2D)

$$T_{\mathsf{CAQR}}^{\alpha,\beta} = \mathcal{O}\left(\sqrt{P}\log^2 P \cdot \alpha + \frac{mn}{\sqrt{P}} \cdot \beta\right) \qquad \qquad M_{\mathsf{CAQR}} = \mathcal{O}\left(\frac{mn}{P}\right)$$

 $^{^1}$ J. Demmel et al., "Communication-optimal Parallel and Sequential QR and LU Factorizations", SISC 2012

²A. Tiskin, "Communication-efficient generic pairwise elimination", Future Generation Computer Systems 2007

³E. Solomonik et al., "A communication-avoiding parallel algorithm for the symmetric eigenvalue problem", SPAA 2017

⁴G. Ballard et al., "A 3D Parallel Algorithm for QR Decomposition", SPAA 2018

⁵E. Hutter et al., "Communication-avoiding CholeskyQR2 for rectangular matrices", IPDPS 2019

ScaLAPACK's PGEQRF is communication-optimal assuming minimal memory (2D)

$$T_{\mathsf{PGEQRF}}^{\alpha,\beta} = \mathcal{O}\left(\frac{n\log P \cdot \alpha + \frac{mn}{\sqrt{P}} \cdot \beta}{\sqrt{P}}\right) \qquad \qquad M_{\mathsf{PGEQRF}} = \mathcal{O}(\frac{mn}{P})$$

CAQR factors panels using TSQR to reduce synchronization¹ (2D)

$$T_{\mathsf{CAQR}}^{\alpha,\beta} = \mathcal{O}\left(\sqrt{P}\log^2 P \cdot \alpha + \frac{mn}{\sqrt{P}} \cdot \beta\right) \qquad \qquad M_{\mathsf{CAQR}} = \mathcal{O}(\frac{mn}{P})$$

CA-CQR2 leverages extra memory to reduce communication (3D)

$$T_{\mathsf{CA-CQR2}}^{\alpha,\beta} = \mathcal{O}\left(\left(\frac{Pn}{m}\right)^{\frac{2}{3}}\log P \cdot \alpha + \left(\frac{n^2m}{P}\right)^{\frac{2}{3}} \cdot \beta\right) \qquad M_{\mathsf{CA-CQR2}} = \mathcal{O}\left(\left(\frac{n^2m}{P}\right)^{\frac{2}{3}}\right)$$

 $^{^1}$ J. Demmel et al., "Communication-optimal Parallel and Sequential QR and LU Factorizations", SISC 2012

²A. Tiskin, "Communication-efficient generic pairwise elimination", Future Generation Computer Systems 2007

³E. Solomonik et al., "A communication-avoiding parallel algorithm for the symmetric eigenvalue problem", SPAA 2017

⁴G. Ballard et al., "A 3D Parallel Algorithm for QR Decomposition", SPAA 2018

⁵E. Hutter et al., "Communication-avoiding CholeskyQR2 for rectangular matrices", IPDPS 2019

ScaLAPACK's PGEQRF is communication-optimal assuming minimal memory (2D)

$$T_{\mathsf{PGEQRF}}^{\alpha,\beta} = \mathcal{O}\left(\frac{n\log P \cdot \alpha + \frac{mn}{\sqrt{P}} \cdot \beta}{\sqrt{P}}\right) \qquad \qquad M_{\mathsf{PGEQRF}} = \mathcal{O}(\frac{mn}{P})$$

CAQR factors panels using TSQR to reduce synchronization¹ (2D)

$$T_{\mathsf{CAQR}}^{\alpha,\beta} = \mathcal{O}\left(\sqrt{P}\log^2 P \cdot \alpha + \frac{mn}{\sqrt{P}} \cdot \beta\right) \qquad \qquad M_{\mathsf{CAQR}} = \mathcal{O}(\frac{mn}{P})$$

CA-CQR2 leverages extra memory to reduce communication (3D)

$$T_{\mathsf{CA-CQR2}}^{\alpha,\beta} = \mathcal{O}\left(\left(\frac{Pn}{m}\right)^{\frac{2}{3}}\log P \cdot \alpha + \left(\frac{n^2m}{P}\right)^{\frac{2}{3}} \cdot \beta\right) \qquad M_{\mathsf{CA-CQR2}} = \mathcal{O}\left(\left(\frac{n^2m}{P}\right)^{\frac{2}{3}}\right)$$

3D algorithms exist in theory^{2 3 4}, but CA-CQR2 is the first practical approach⁵

 $^{^1}$ J. Demmel et al., "Communication-optimal Parallel and Sequential QR and LU Factorizations", SISC 2012

²A. Tiskin, "Communication-efficient generic pairwise elimination", Future Generation Computer Systems 2007

³E. Solomonik et al., "A communication-avoiding parallel algorithm for the symmetric eigenvalue problem", SPAA 2017

⁴G. Ballard et al., "A 3D Parallel Algorithm for QR Decomposition", SPAA 2018

⁵E. Hutter et al., "Communication-avoiding CholeskyQR2 for rectangular matrices", IPDPS 2019

Instability of Cholesky-QR

 ${\sf QR}$ factorization algorithms used in practice stem from processes of orthogonal triangularization for their superior numerical stability

 $Q_n Q_{n-1} \dots Q_1 A = R$

 $^{^{1}}$ Y. Yamamoto et al., "Roundoff Error Analysis of the CholeskyQR2 algorithm", Electron. Trans. Numer. Anal. 2015

 ${\sf QR}$ factorization algorithms used in practice stem from processes of orthogonal triangularization for their superior numerical stability

$$Q_n Q_{n-1} \dots Q_1 A = R$$

The Cholesky-QR algorithm is a simple algorithm that follows a numerically unstable process of triangular orthogonalization

$$AR_1^{-1}R_2^{-1}\ldots R_n^{-1}=Q$$

 $^{^{1}}$ Y. Yamamoto et al., "Roundoff Error Analysis of the CholeskyQR2 algorithm", Electron. Trans. Numer. Anal. 2015

 ${\sf QR}$ factorization algorithms used in practice stem from processes of orthogonal triangularization for their superior numerical stability

 $Q_n Q_{n-1} \dots Q_1 A = R$

The Cholesky-QR algorithm is a simple algorithm that follows a numerically unstable process of triangular orthogonalization

$$AR_1^{-1}R_2^{-1}\ldots R_n^{-1}=Q$$

$[Q,R] \leftarrow \textbf{Cholesky-QR}(A)$				
$B \leftarrow A^{T}A$ $R^{T}R \leftarrow B$ $Q \leftarrow AR^{-1}$	 ▷ B may be indefinite! ▷ Possible failure in Cholesky factorization! ▷ R may have lost all accuracy! Q may lost orthogonality! 			

Edward Hutter and Edgar Solomonik

¹Y. Yamamoto et al., "Roundoff Error Analysis of the CholeskyQR2 algorithm", Electron. Trans. Numer. Anal. 2015

 ${\sf QR}$ factorization algorithms used in practice stem from processes of orthogonal triangularization for their superior numerical stability

 $Q_n Q_{n-1} \dots Q_1 A = R$

The Cholesky-QR algorithm is a simple algorithm that follows a numerically unstable process of triangular orthogonalization

$$AR_1^{-1}R_2^{-1}\ldots R_n^{-1}=Q$$

CholeskyQR2 leverages near-perfect conditioning of Q in a second iteration¹

Edward Hutter and Edgar Solomonik

¹Y. Yamamoto et al., "Roundoff Error Analysis of the CholeskyQR2 algorithm", Electron. Trans. Numer. Anal. 2015

Cholesky-QR2 (CQR2) can achieve superior performance on tall-and-skinny matrices¹

 $^{^{1}\}text{T.}$ Fukaya et al., "CholeskyQR2: A communication-avoiding algorithm", ScalA 2014

Cholesky-QR2 (CQR2) can achieve superior performance on tall-and-skinny matrices¹

• Householder QR -
$$2mn^2 - \frac{2n^3}{3}$$
 flops, Cholesky-QR2 - $4mn^2 + \frac{5n^3}{3}$ flops

 $^{^{1}\}text{T.}$ Fukaya et al., "CholeskyQR2: A communication-avoiding algorithm", ScalA 2014

Cholesky-QR2 (CQR2) can achieve superior performance on tall-and-skinny matrices¹

Householder QR -
$$2mn^2 - \frac{2n^3}{3}$$
 flops, Cholesky-QR2 - $4mn^2 + \frac{5n^3}{3}$ flops

 $^{^{1}\}text{T.}$ Fukaya et al., "CholeskyQR2: A communication-avoiding algorithm", ScalA 2014

Cholesky-QR2 (CQR2) can achieve superior performance on tall-and-skinny matrices¹

Householder QR -
$$2mn^2 - \frac{2n^3}{3}$$
 flops, Cholesky-QR2 - $4mn^2 + \frac{5n^3}{3}$ flops

CQR2 attains minimal communication cost (by $\mathcal{O}(\log P)$), yet simple implementation

$$T_{\text{Cholesky-QR2}}(m, n, P) = \mathcal{O}\left(\log P \cdot \alpha + \frac{n^2}{P} \cdot \beta + \left(\frac{n^2m}{P} + \frac{n^3}{P}\right) \cdot \gamma\right)$$

 $^{^{1}\}text{T.}$ Fukaya et al., "CholeskyQR2: A communication-avoiding algorithm", ScalA 2014

Cholesky-QR2 (CQR2) can achieve superior performance on tall-and-skinny matrices¹

Householder QR -
$$2mn^2 - \frac{2n^3}{3}$$
 flops, Cholesky-QR2 - $4mn^2 + \frac{5n^3}{3}$ flops

CQR2 attains minimal communication cost (by $\mathcal{O}(\log P)$), yet simple implementation

$$T_{\text{Cholesky-QR2}}(m, n, P) = \mathcal{O}\left(\log P \cdot \alpha + n^2 \cdot \beta + \left(\frac{n^2m}{P} + n^3\right) \cdot \gamma\right)$$

CA-CQR2 parallelizes Cholesky-QR2 over a 3D processor grid, efficiently factoring any rectangular matrix

Edward Hutter and Edgar Solomonik

¹T. Fukaya et al., "CholeskyQR2: A communication-avoiding algorithm", ScalA 2014

CA-CQR2's communication-optimal parallelization

CA-CQR2 leverages known 3D algorithms for matrix multiplication 1 and Cholesky factorization 2

¹Bersten 1989, "Communication-efficient matrix multiplication on hypercubes", Aggarwal, Chandra, Snir 1990, "Communication complexity of PRAMs", Agarwal et al. 1995, "A three-dimensional approach to parallel matrix multiplication"

²A. Tiskin 2007, "Communication-efficient generic pairwise elimination", Future Generation Computer Systems 2007

CA-CQR2 leverages known 3D algorithms for matrix multiplication 1 and Cholesky factorization 2

A tunable 3D processor grid of dimensions $c \times d \times c$ determines the replication factor (c), the communication reduction (\sqrt{c}), and the number of simultaneous instances of 3D algorithms (d/c)

¹Bersten 1989, "Communication-efficient matrix multiplication on hypercubes", Aggarwal, Chandra, Snir 1990, "Communication complexity of PRAMs", Agarwal et al. 1995, "A three-dimensional approach to parallel matrix multiplication"

²A. Tiskin 2007, "Communication-efficient generic pairwise elimination", Future Generation Computer Systems 2007

CA-CQR2 leverages known 3D algorithms for matrix multiplication 1 and Cholesky factorization 2

A tunable 3D processor grid of dimensions $c \times d \times c$ determines the replication factor (c), the communication reduction (\sqrt{c}), and the number of simultaneous instances of 3D algorithms (d/c)

Figure: Computation of Gram matrix $A^T A$

¹Bersten 1989, "Communication-efficient matrix multiplication on hypercubes", Aggarwal, Chandra, Snir 1990, "Communication complexity of PRAMs", Agarwal et al. 1995, "A three-dimensional approach to parallel matrix multiplication"

²A. Tiskin 2007, "Communication-efficient generic pairwise elimination", Future Generation Computer Systems 2007

Edward Hutter and Edgar Solomonik

CA-CQR2 leverages known 3D algorithms for matrix multiplication 1 and Cholesky factorization 2

A tunable 3D processor grid of dimensions $c \times d \times c$ determines the replication factor (c), the communication reduction (\sqrt{c}), and the number of simultaneous instances of 3D algorithms (d/c)

Figure: $\frac{d}{c}$ simultaneous 3D Cholesky on cubes of dimension c

Cost:
$$\mathcal{O}\left(c^2 \log c^3 \cdot \alpha + \frac{n^2}{c^2} \cdot \beta + \frac{n^3}{c^3} \cdot \gamma\right)$$

¹Bersten 1989, "Communication-efficient matrix multiplication on hypercubes", Aggarwal, Chandra, Snir 1990, "Communication complexity of PRAMs", Agarwal et al. 1995, "A three-dimensional approach to parallel matrix multiplication"

²A. Tiskin 2007, "Communication-efficient generic pairwise elimination", Future Generation Computer Systems 2007

CA-CQR2 leverages known 3D algorithms for matrix multiplication 1 and Cholesky factorization 2

A tunable 3D processor grid of dimensions $c \times d \times c$ determines the replication factor (c), the communication reduction (\sqrt{c}) , and the number of simultaneous instances of 3D algorithms (d/c)

Figure: $\frac{d}{c}$ simultaneous 3D MatMul / TRSM on cubes of dimension c

Cost:
$$\mathcal{O}\left(\log c^3 \cdot \alpha + \frac{n^2}{c^2} \cdot \beta + \frac{n^3}{c^3} \cdot \gamma\right)$$

¹Bersten 1989, "Communication-efficient matrix multiplication on hypercubes", Aggarwal, Chandra, Snir 1990, "Communication complexity of PRAMs", Agarwal et al. 1995, "A three-dimensional approach to parallel matrix multiplication"

²A. Tiskin 2007, "Communication-efficient generic pairwise elimination", Future Generation Computer Systems 2007

$$T_{\mathsf{CA-CQR2}}^{\alpha-\beta}(m,n,c,d) = \mathcal{O}\left(c^2\log(d/c)\cdot\alpha + \left(\frac{mn}{dc} + \frac{n^2}{c^2}\right)\cdot\beta + \left(\frac{mn^2}{c^2d} + \frac{n^3}{c^3}\right)\cdot\gamma\right)$$

$$T_{\mathsf{CA-CQR2}}^{\alpha-\beta}(m,n,c,d) = \mathcal{O}\left(c^2\log(d/c)\cdot\alpha + \left(\frac{mn}{dc} + \frac{n^2}{c^2}\right)\cdot\beta + \left(\frac{mn^2}{c^2d} + \frac{n^3}{c^3}\right)\cdot\gamma\right)$$

$$T_{\mathsf{CA-CQR2}}^{\alpha-\beta}(m,n,c,d) = \mathcal{O}\left(c^2\log(d/c)\cdot\alpha + \left(\frac{mn}{dc} + \frac{n^2}{c^2}\right)\cdot\beta + \left(\frac{mn^2}{c^2d} + \frac{n^3}{c^3}\right)\cdot\gamma\right)$$

Requiring each processor to own a square submatrix $\left(\frac{m}{d} = \frac{n}{c}\right)$ and enforcing $P = c^2 d$, CA-CQR2 finds an optimal processor grid that support $\frac{m}{d}$ minimal communication

1D Cholesky-QR2

messages $\mathcal{O}(\log P)$ words $\mathcal{O}(n^2)$ flops $\mathcal{O}\left(\frac{n^2m}{P} + n^3\right)$ memory $\mathcal{O}\left(\frac{mn}{P} + n^2\right)$

$$T_{\mathsf{CA-CQR2}}^{\alpha-\beta}(m,n,c,d) = \mathcal{O}\left(c^2\log(d/c)\cdot\alpha + \left(\frac{mn}{dc} + \frac{n^2}{c^2}\right)\cdot\beta + \left(\frac{mn^2}{c^2d} + \frac{n^3}{c^3}\right)\cdot\gamma\right)$$

1D Cholesky-QR22D ScaLAPACKmessages
$$\mathcal{O}(\log P)$$
 $\mathcal{O}(n \log P)$ words $\mathcal{O}(n^2)$ $\mathcal{O}(\frac{mn}{\sqrt{P}})$ flops $\mathcal{O}(\frac{n^2m}{P} + n^3)$ $\mathcal{O}(\frac{mn^2}{P})$ memory $\mathcal{O}(\frac{mn}{P} + n^2)$ $\mathcal{O}(\frac{m}{P})$

$$T_{\mathsf{CA-CQR2}}^{\alpha-\beta}(m,n,c,d) = \mathcal{O}\left(c^2\log(d/c)\cdot\alpha + \left(\frac{mn}{dc} + \frac{n^2}{c^2}\right)\cdot\beta + \left(\frac{mn^2}{c^2d} + \frac{n^3}{c^3}\right)\cdot\gamma\right)$$

	1D Cholesky-QR2	2D ScaLAPACK	2D CAQR
messages	$\mathcal{O}\left(\log P\right)$	$\mathcal{O}(n \log P)$	$\mathcal{O}\left(\sqrt{P}\log^2 P\right)$
words	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}(\frac{mn}{\sqrt{P}})$	$\mathcal{O}(\frac{mn}{\sqrt{P}})$
flops	$\mathcal{O}\left(\frac{n^2m}{P}+n^3\right)$	$\mathcal{O}(\frac{mn^2}{P})$	$\mathcal{O}(\frac{mn^2}{P})$
memory	$\mathcal{O}\left(\frac{mn}{P}+n^2\right)$	$\mathcal{O}(\frac{mn}{P})$	$\mathcal{O}(\frac{mn}{P})$

$$T_{\mathsf{CA-CQR2}}^{\alpha-\beta}(m,n,c,d) = \mathcal{O}\left(c^2\log(d/c)\cdot\alpha + \left(\frac{mn}{dc} + \frac{n^2}{c^2}\right)\cdot\beta + \left(\frac{mn^2}{c^2d} + \frac{n^3}{c^3}\right)\cdot\gamma\right)$$

1D Cholesky-QR22D ScaLAPACK2D CAQR3D CA-CQR2messages
$$\mathcal{O}(\log P)$$
 $\mathcal{O}(n \log P)$ $\mathcal{O}\left(\sqrt{P} \log^2 P\right)$ $\mathcal{O}\left(\left(\frac{Pn}{m}\right)^{\frac{2}{3}} \log P\right)$ words $\mathcal{O}\left(n^2\right)$ $\mathcal{O}\left(\frac{mn}{\sqrt{P}}\right)$ $\mathcal{O}\left(\frac{mn}{\sqrt{P}}\right)$ $\mathcal{O}\left(\left(\frac{n^2m}{P}\right)^{\frac{2}{3}}\right)$ flops $\mathcal{O}\left(\frac{n^2m}{P} + n^3\right)$ $\mathcal{O}(\frac{mn^2}{P})$ $\mathcal{O}\left(\frac{mn^2}{P}\right)$ $\mathcal{O}\left(\frac{n^2m}{P}\right)$ memory $\mathcal{O}\left(\frac{mn}{P} + n^2\right)$ $\mathcal{O}(\frac{mn}{P})$ $\mathcal{O}\left(\frac{mn}{P}\right)$ $\mathcal{O}\left(\frac{(n^2m)}{P}\right)^{\frac{2}{3}}$

$$T_{\mathsf{CA-CQR2}}^{\alpha-\beta}(m,n,c,d) = \mathcal{O}\left(c^2\log(d/c)\cdot\alpha + \left(\frac{mn}{dc} + \frac{n^2}{c^2}\right)\cdot\beta + \left(\frac{mn^2}{c^2d} + \frac{n^3}{c^3}\right)\cdot\gamma\right)$$

Requiring each processor to own a square submatrix $\left(\frac{m}{d} = \frac{n}{c}\right)$ and enforcing $P = c^2 d$, CA-CQR2 finds an optimal processor grid that support minimal communication

1D Cholesky-QR22D ScaLAPACK2D CAQR3D CA-CQR2messages
$$\mathcal{O}(\log P)$$
 $\mathcal{O}(n \log P)$ $\mathcal{O}\left(\sqrt{P} \log^2 P\right)$ $\mathcal{O}\left(\left(\frac{Pn}{m}\right)^{\frac{2}{3}} \log P\right)$ words $\mathcal{O}(n^2)$ $\mathcal{O}(\frac{mn}{\sqrt{P}})$ $\mathcal{O}(\frac{mn}{\sqrt{P}})$ $\mathcal{O}\left(\left(\frac{n^2m}{P}\right)^{\frac{2}{3}}\right)$ flops $\mathcal{O}\left(\frac{n^2m}{P} + n^3\right)$ $\mathcal{O}(\frac{mn^2}{P})$ $\mathcal{O}(\frac{mn^2}{P})$ $\mathcal{O}\left(\frac{n^2m}{P}\right)^{\frac{2}{3}}$ memory $\mathcal{O}\left(\frac{mn}{P} + n^2\right)$ $\mathcal{O}(\frac{mn}{P})$ $\mathcal{O}(\frac{mn}{P})$ $\mathcal{O}\left(\frac{n^2m}{P}\right)^{\frac{2}{3}}$

Minimal communication cost in a QR factorization is reflected by the surface area of the cubic volume of $O(mn^2/P)$ computation

 $^{^{1}}$ Intel Knights Landing (KNL) cluster at TACC

²Cray XE/XK hybrid machine at NCSA

 $^{^{1}}$ Intel Knights Landing (KNL) cluster at TACC

²Cray XE/XK hybrid machine at NCSA

Scaling studies highlight interplay between CA-CQR2's increased arithmetic intensity and an architecture's machine balance

 \blacksquare ratio of peak-flops to network bandwidth is 8x higher on Stampede21 than BlueWaters^2

¹Intel Knights Landing (KNL) cluster at TACC

²Cray XE/XK hybrid machine at NCSA

Scaling studies highlight interplay between CA-CQR2's increased arithmetic intensity and an architecture's machine balance

 \blacksquare ratio of peak-flops to network bandwidth is 8x higher on Stampede21 than BlueWaters^2

We show only the most-performant variants at each node count of CA-CQR2 and ScaLAPACK's PGEQRF

- ScaLAPACK tuned over 2D processor grid dimensions and block sizes
- CA-CQR2 tuned over processor grid dimensions d and c
- each tested/tuned over a number of resource configurations
- both algorithms use Householder's flop cost in determining performance

¹Intel Knights Landing (KNL) cluster at TACC

²Cray XE/XK hybrid machine at NCSA

	u/u	Comput	512 DE	1024 DE	2048 Pr	4096 PE	8192 Pr	² 6384 D.	32,08 D.	65536 Dr
BlueWaters	4096	2.00×	$1.01 \times$	0.88x	0.70×	0.62x	0.62×	0.73x	$1.00 \times$	-
BlueWaters	512	2.00x	0.51×	0.48x	0.51×	0.56×	0.66	0.86×	1.36×	-
BlueWaters	64	2.02x	0.51x	0.53x	0.53x	0.61×	0.73x	0.91x	0.92	-
BlueWaters	8	2.20x	0.53x	0.54x	0.55x	0.72x	0.75x	0.67x	0.47x	-
Blue Waters	1	4.25×	0.26x	0.21x	0.18x	0.27x	0.21×	0.13x	0.13x	-
Stampede2	4096	2.00×	-	-	-	0.70×	1.02×	1.27×	1.72×	3.13×
Stampede2	512	2.00x	-	-	-	0.52x	0.99x	1.47x	2.01x	3.34x
Stampede2	64	2.02x	-	-	-	0.77x	1.19x	1.59×	1.82x	2.61x
Stampede2	8	2.20x	-	-	-	0.77x	$1.00 \times$	1.21×	1.36×	1.60×
Stampede2	1	4.25×	-	-	-	0.48x	0.55×	0.66x	$1.41 \times$	1.02x

	<u>,</u> ¢	Comput	PF.	102 V	2040 Dr	⁴⁰⁹⁶ Pr	0192 Dr	² 6384 Dr.	32708 D.	65336 PF
	Ę	ି	512	07	ço,	Ő¢	6 V	76	~~``	65
BlueWaters	4096	2.00×	$1.01 \times$	0.88x	0.70×	0.62x	0.62x	0.73x	$1.00 \times$	-
BlueWaters	512	2.00x	0.51x	0.48x	0.51x	0.56x	0.66	0.86x	1.36x	-
BlueWaters	64	2.02x	0.51×	0.53x	0.53x	0.61x	0.73x	0.91x	0.92	-
BlueWaters	8	2.20x	0.53x	0.54x	0.55x	0.72x	0.75x	0.67x	0.47x	-
Blue Waters	1	4.25x	0.26x	0.21x	0.18x	0.27x	0.21x	0.13x	0.13x	-
Stampede2	4096	2.00x	-	-	-	0.70x	1.02x	1.27x	1.72x	3.13x
Stampede2	512	2.00x	-	-	-	0.52x	0.99x	1.47x	2.01x	3.34x
Stampede2	64	2.02x	-	-	-	0.77x	1.19x	1.59x	1.82x	2.61x
Stampede2	8	2.20×	-	-	-	0.77x	1.00×	1.21×	1.36×	1.60×
Stampede2	1	4.25×	-	-	-	0.48x	0.55x	0.66x	$1.41 \times$	1.02x

	~	Comput	512 PF	102 Nr.	2040 Dr	4096 Pr	0192 Dr	² 6384 Dr.	32708 Dr.	65536 PF
	n'n	્રે	513	207 20	50	⁴ 0 ⁶	520	163	ŝ	653
BlueWaters	4096			0.88x	0.70×	0.62×	0.62x	0.73×	$1.00 \times$	-
BlueWaters	512	2.00x	0.51x	0.48x	0.51x	0.56x	0.66	0.86x	1.36x	-
BlueWaters	64	2.02x	0.51x	0.53x	0.53x	0.61×	0.73x	0.91×	0.92	-
BlueWaters	8	2.20x	0.53x	0.54x	0.55x	0.72x	0.75x	0.67x	0.47x	-
Blue Waters	1	4.25×	0.26x	0.21x	0.18x	0.27x	0.21x	0.13x	0.13x	-
Stampede2	4096	2.00x	-	-	-	0.70x	1.02x	1.27x	1.72x	3.13x
Stampede2	512	2.00x	-	-	-	0.52x	0.99x	1.47x	2.01x	3.34x
Stampede2	64	2.02x	-	-	-	0.77x	1.19x	1.59×	1.82x	2.61x
Stampede2	8	2.20x	-	-	-	0.77x	1.00x	1.21x	1.36x	1.60x
Stampede2	1	4.25×	-	-	-	0.48x	0.55x	0.66x	1.41x	1.02x

		Comput	512 PE	1024 Dr	2040 Dr	4096 Dr	⁰² 192 Dr	¹ 6384 D.	32708 D.	OS536 PES
	n'n	Š	512	202	204	605	610	103 203	ŝ	હરે
BlueWaters	4096	2.00×	1.01×	0.88x	0.70×	0.62x	0.62x	0.73×	$1.00 \times$	-
BlueWaters	512	2.00×	0.51×	0.48x	0.51x	0.56x	0.66	0.86×	1.36×	-
BlueWaters	64	2.02x	0.51×	0.53x	0.53x	0.61x	0.73x	0.91x	0.92	-
BlueWaters	8	2.20x	0.53x	0.54x	0.55x	0.72x	0.75x	0.67x	0.47x	-
Blue Waters	1	4.25×	0.26x	0.21x	0.18x	0.27x	0.21x	0.13x	0.13x	-
Stampede2	4096	2.00x	-	-	-	0.70x	1.02x	1.27x	1.72x	3.13x
Stampede2	512	2.00×	-	-	-	0.52x	0.99x	1.47×	2.01×	3.34x
Stampede2	64	2.02x	-	-	-	0.77x	1.19x	1.59×	1.82x	2.61x
Stampede2	8	2.20x	-	-	-	0.77x	$1.00 \times$	1.21x	1.36x	1.60x
Stampede2	1	4.25×	-	-	-	0.48x	0.55x	0.66x	1.41×	1.02x

		Comput	etion F	2 L	S 4	Pr Cs	S 4	¹ 6384 Dr	32708 D.	63536 F5
	2 4	Como	512 PF	102 PC	2040 Dr	4096 Pr	8192 Dr	² 638	5° 200	65 ⁵³
BlueWaters	4096	2.00×	1.01×	0.88x	0.70×	0.62x	0.62x	0.73×	$1.00 \times$	-
BlueWaters	512	2.00×	0.51×	0.48x	0.51x	0.56x	0.66	0.86x	1.36×	-
BlueWaters	64	2.02x	0.51×	0.53x	0.53x	0.61x	0.73x	0.91×	0.92	-
BlueWaters	8	2.20x	0.53x	0.54x	0.55x	0.72x	0.75x	0.67x	0.47x	-
Blue Waters	1	4.25x	0.26x	0.21x	0.18x	0.27x	0.21x	0.13x	0.13x	-
Stampede2	4096	2.00x	-	-	-	0.70x	1.02x	1.27x	1.72x	3.13x
Stampede2	512	2.00x	-	-	-	0.52x	0.99x	1.47×	2.01×	3.34x
Stampede2	64	2.02x	-	-	-	0.77x	1.19x	1.59×	1.82×	2.61x
Stampede2	8	2.20×	-	-	-	0.77×	1.00×	1.21×	1.36×	1.60×
Stampede2	1	4.25×	-	-	-	0.48x	0.55×	0.66x	1.41x	1.02x

QR Strong scaling critical path analysis

QR Strong scaling critical path analysis

QR Strong scaling critical path analysis

¹Our preprint detailing CA-CQR2 can be found at https://arxiv.org/abs/1710.08471

²Our C++ implementation can be found at https://github.com/huttered40/CA-CQR2

CA-CQR2 leverages current and future architectural trends

- machines with highest ratio of peak node performance to peak injection bandwidth will benefit most
- asymptotic communication reductuction increasingly evident as we scale, despite overheads in synchronization and computation

¹Our preprint detailing CA-CQR2 can be found at https://arxiv.org/abs/1710.08471

 $^{^{2}}$ Our C++ implementation can be found at https://github.com/huttered40/CA-CQR2

CA-CQR2 leverages current and future architectural trends

- machines with highest ratio of peak node performance to peak injection bandwidth will benefit most
- asymptotic communication reductuction increasingly evident as we scale, despite overheads in synchronization and computation

These results motivate increasingly wide overdetermined systems, a critical use case for solving linear least squares and eigenvalue problems

¹Our preprint detailing CA-CQR2 can be found at https://arxiv.org/abs/1710.08471

²Our C++ implementation can be found at https://github.com/huttered40/CA-CQR2

CA-CQR2 leverages current and future architectural trends

- machines with highest ratio of peak node performance to peak injection bandwidth will benefit most
- asymptotic communication reductuction increasingly evident as we scale, despite overheads in synchronization and computation

These results motivate increasingly wide overdetermined systems, a critical use case for solving linear least squares and eigenvalue problems

Offloading computation to GPUs on XK nodes is a work in progress

¹Our preprint detailing CA-CQR2 can be found at https://arxiv.org/abs/1710.08471

²Our C++ implementation can be found at https://github.com/huttered40/CA-CQR2

CA-CQR2 leverages current and future architectural trends

- machines with highest ratio of peak node performance to peak injection bandwidth will benefit most
- asymptotic communication reductuction increasingly evident as we scale, despite overheads in synchronization and computation

These results motivate increasingly wide overdetermined systems, a critical use case for solving linear least squares and eigenvalue problems

Offloading computation to GPUs on XK nodes is a work in progress

Our study shows that communication-optimal parallel QR factorizations can achieve superior performance and scaling up to thousands of nodes $^{\!\!1\!\!2}$

¹Our preprint detailing CA-CQR2 can be found at https://arxiv.org/abs/1710.08471

²Our C++ implementation can be found at https://github.com/huttered40/CA-CQR2


```
https://github.com/cyclops-community/ctf
Cyclops Community
Pedage Tensor Develops Community
Pedage Tensor Develops Community
Pedage Tensor Develops Community
Index Index
```

Z["abij"] += V["ijab"]; // C++

```
Z[ abi] ] += 0[ zja0 ], 
W["mnij"] += 0.5*W["mnef"]*T["efij"]; // C++
M["ij"] += Function<>([](double x){ return 1/x; })(v["j"]);
W.i("mnij") << 0.5*W.i("mnef")*T.i("efij") // Python
[Z,SC,C] = Z.i("abk").svd("abc","kc",rank) // Python
einsum("mnef,efij->mnij",W,T) // numpy-style Python
```

```
https://github.com/cyclops-community/ctf
L P. N A @ CS@Illinois
Cyclops Community
pdox Tence Framework Devenue Communy
Matrix<int> A(n, n, AS|SP, World(MPI_COMM_WORLD));
Tensor<float> T(order, is_sparse, dims, syms, ring, world);
T.read(...); T.write(...); T.slice(...); T.permute(...);
parallel contraction/summation/transformation of tensors
```

```
Z["abij"] += V["ijab"]; // C++
W["mnij"] += 0.5*W["mnef"]*T["efij"]; // C++
M["ij"] += Function<>([](duble x){ return 1/x; })(v["j"]);
W.i("mnij") << 0.5*W.i("mnef")*T.i("efij") // Python
[Z,SC,C] = Z.i("abk").svd("abc","kc",rank) // Python
einsum("mnef,efij->mnij",W,T) // numpy-style Python
```

 Cyclops applications (some using Blue Waters): tensor decomposition, tensor completion, tensor networks (DMRG), quantum chemistry, quantum circuit simulation, graph algorithms, bioinformatics We'd also like to acknowledge NCSA and TACC for providing benchmarking resources

- Texas Advanced Computing Center (TACC) via Stampede2²
- National Center for Supercomputing Applications (NCSA) via Blue Waters³

I'd like to acknowledge the Department of Energy and Krell Institute for supporting this research via awarding me a DOE Computational Science Graduate Fellowship¹

¹Grant number DE-SC0019323

²Allocation TG-CCR180006

³Awards OCI-0725070 and ACI-1238993

The Cholesky-QR2 algorithm can achieve stability through iterative refinement¹

 $^{^1} Y.$ Yamamoto et al., "Roundoff Error Analysis of the CholeskyQR2 algorithm", Electron. Trans. Numer. Anal. 2015 $^2 T.$ Fukaya et al., "Shifted CholeskyQR for computing the QR factorization of ill-conditioned matrices", Arxiv 2018

Conditional stability of Cholesky-QR2

The Cholesky-QR2 algorithm can achieve stability through iterative refinement¹

$[Q, R] \leftarrow Cholesky-QR2(A)$

 $Z, R_1 \leftarrow CQR(A)$ $Q, R_2 \leftarrow CQR(Z)$ $R \leftarrow R_2R_1$

 $^{^{1}}$ Y. Yamamoto et al., "Roundoff Error Analysis of the CholeskyQR2 algorithm", Electron. Trans. Numer. Anal. 2015 2 T. Fukaya et al., "Shifted CholeskyQR for computing the QR factorization of ill-conditioned matrices", Arxiv 2018

Conditional stability of Cholesky-QR2

The Cholesky-QR2 algorithm can achieve stability through iterative refinement¹

$[Q, R] \leftarrow Cholesky-QR2(A)$

 $\begin{array}{l} Z, R_1 \leftarrow CQR(A) \\ Q, R_2 \leftarrow CQR(Z) \\ R \leftarrow R_2R_1 \end{array}$

leverages near-perfect conditioning of Z in a second iteration¹

 $^{^{1}}$ Y. Yamamoto et al., "Roundoff Error Analysis of the CholeskyQR2 algorithm", Electron. Trans. Numer. Anal. 2015 2 T. Fukaya et al., "Shifted CholeskyQR for computing the QR factorization of ill-conditioned matrices", Arxiv 2018

Conditional stability of Cholesky-QR2

The Cholesky-QR2 algorithm can achieve stability through iterative refinement¹

$[Q, R] \leftarrow Cholesky-QR2(A)$

 $Z, R_1 \leftarrow CQR(A)$ $Q, R_2 \leftarrow CQR(Z)$ $R \leftarrow R_2R_1$

- leverages near-perfect conditioning of Z in a second iteration¹
- $A = ZR_1 = QR_2R_1$, from $A^TA = R_1^T Z^T ZR_1 = R_1^T R_2^T Q^T QR_2R_1$, where R_2 corrects initial R_1

 $^{^{1}}$ Y. Yamamoto et al., "Roundoff Error Analysis of the CholeskyQR2 algorithm", Electron. Trans. Numer. Anal. 2015 2 T. Fukaya et al., "Shifted CholeskyQR for computing the QR factorization of ill-conditioned matrices", Arxiv 2018

Conditional stability of Cholesky-QR2

The Cholesky-QR2 algorithm can achieve stability through iterative refinement¹

$[Q, R] \leftarrow Cholesky-QR2(A)$

 $Z, R_1 \leftarrow CQR(A)$ $Q, R_2 \leftarrow CQR(Z)$ $R \leftarrow R_2R_1$

- leverages near-perfect conditioning of Z in a second iteration¹
- $A = ZR_1 = QR_2R_1$, from $A^TA = R_1^T Z^T ZR_1 = R_1^T R_2^T Q^T QR_2R_1$, where R_2 corrects initial R_1
- numerical breakdown still possible if first iteration loses positive definiteness in A^TA via $\kappa(A) \leq 1/\sqrt{\epsilon}$

 $^{^1}Y$. Yamamoto et al., "Roundoff Error Analysis of the CholeskyQR2 algorithm", Electron. Trans. Numer. Anal. 2015 2T . Fukaya et al., "Shifted CholeskyQR for computing the QR factorization of ill-conditioned matrices", Arxiv 2018

Conditional stability of Cholesky-QR2

The Cholesky-QR2 algorithm can achieve stability through iterative refinement¹

$[Q, R] \leftarrow Cholesky-QR2(A)$

 $Z, R_1 \leftarrow CQR(A)$ $Q, R_2 \leftarrow CQR(Z)$ $R \leftarrow R_2R_1$

- leverages near-perfect conditioning of Z in a second iteration¹
- $A = ZR_1 = QR_2R_1$, from $A^TA = R_1^T Z^T ZR_1 = R_1^T R_2^T Q^T QR_2R_1$, where R_2 corrects initial R_1
- numerical breakdown still possible if first iteration loses positive definiteness in $A^T A$ via $\kappa(A) \leq 1/\sqrt{\epsilon}$

Shifted Cholesky-QR² can attain a stable factorization for any matrix $\kappa({\sf A}) \leq 1/\epsilon$

- the eigenvalues of $A^T A$ are shifted to prevent loss of positive definiteness
- three Cholesky-QR iterations required, essentially 3 6x more flops than Householder approaches

 $^{^{1}}$ Y. Yamamoto et al., "Roundoff Error Analysis of the CholeskyQR2 algorithm", Electron. Trans. Numer. Anal. 2015

²T. Fukaya et al., "Shifted CholeskyQR for computing the QR factorization of ill-conditioned matrices", Arxiv 2018

Figure: 3D algorithm for square matrix multiplication ^{1 2 3}

Edward Hutter and Edgar Solomonik

¹Bersten 1989, "Communication-efficient matrix multiplication on hypercubes"

²Aggarwal, Chandra, Snir 1990, "Communication complexity of PRAMs"

³Agarwal et al. 1995, "A three-dimensional approach to parallel matrix multiplication"

We can embed the recursive definitions of Cholesky factorization and triangular inverse to find matrices R, R^{-1}

Tuning the recursion tree yields a tradeoff in horizontal bandwidth and synchronization $^{1} \ \ \,$

$$\begin{bmatrix} L, L^{-1} \end{bmatrix} \leftarrow \mathsf{CholeskyInverse}(A)$$

$$\begin{bmatrix} \iota_{11} & \iota_{11}^{-1} \end{bmatrix} \leftarrow \mathsf{CholeskyInverse}(A_{11})$$

$$\iota_{21} \leftarrow A_{21}\iota_{11}^{-T}$$

$$\begin{bmatrix} \iota_{22} & \iota_{22}^{-1} \end{bmatrix} \leftarrow \mathsf{CholeskyInverse}(A_{22} - \iota_{21}\iota_{21}^{T})$$

$$\iota_{21}^{-1} \leftarrow -\iota_{22}^{-1}\iota_{21}\iota_{11}^{-1}$$

$$\begin{split} T_{\mathsf{Choleskylnverse3D}}\left(n,P\right) &= \mathcal{O}\left(P^{\frac{2}{3}}\log P \cdot \alpha + \frac{n^{2}}{P^{\frac{2}{3}}} \cdot \beta + \frac{n^{3}}{P} \cdot \gamma\right) \\ T_{\mathsf{ScalAPACK}}\left(n,P\right) &= \mathcal{O}\left(\sqrt{P}\log P \cdot \alpha + \frac{n^{2}}{\sqrt{P}} \cdot \beta + \frac{n^{3}}{P} \cdot \gamma\right) \end{split}$$

¹A. Tiskin 2007, "Communication-efficient generic pairwise elimination"

Figure: Start with a tunable $c \times d \times c$ processor grid

Figure: Broadcast columns of A

Cost:
$$2\log_2 c \cdot \alpha + \frac{2mn}{dc} \cdot \beta$$

Figure: Reduce contiguous groups of size c

Cost:
$$2\log_2 c \cdot \alpha + \frac{2n^2}{c^2} \cdot \beta + \frac{n^2}{c^2} \cdot \gamma$$

Figure: Allreduce alternating groups of size $\frac{d}{c}$

Cost:
$$2 \log_2 \frac{d}{c} \cdot \alpha + \frac{2n^2}{c^2} \cdot \beta + \frac{n^2}{c^2} \cdot \gamma$$

Figure: Broadcast missing pieces of B along depth

Cost:
$$2\log_2 c \cdot \alpha + \frac{2n^2}{c^2} \cdot \beta$$

CA-CQR2 - Computation of CholeskyInverse

Figure: $\frac{d}{c}$ simultaneous 3D Choleskylnverse on cubes of dimension c

CA-CQR2 – Computation of triangular solve

Figure: $\frac{d}{c}$ simultaneous 3D matrix multiplication or TRSM on cubes of dimension c

Optimum cost of CholesyQR2_Tunable

The advantage of using a tunable grid lies in the ability to frame the shape of the grid around the shape of rectangular $m \times n$ matrix A. Optimal communication can be attained by ensuring that the grid perfectly fits the dimensions of A, or that the dimensions of the grid are proportional to the dimensions of the matrix. We derive the cost for the optimal ratio $\frac{m}{d} = \frac{n}{d}$ below. Using equation $P = e^2 d$ and

 $\frac{m}{d} = \frac{n}{c}, \text{ solve for } d, c \text{ in terms of } m, n, P. \text{ Solving the system of equations yields } c = \left(\frac{Pn}{m}\right)^{\frac{1}{3}}, d = \left(\frac{Pm^2}{n^2}\right)^{\frac{1}{3}}.$ We can plug these values into the cost of Cholesky-QR2. Tunable to find the optimal cost.

$$\begin{aligned} \mathcal{T}_{\text{Cholesky-QR2.Tunable}}^{\alpha-\beta} \left(m, n, \left(\frac{Pn}{m}\right)^{\frac{1}{3}}, \left(\frac{Pm^2}{n^2}\right)^{\frac{1}{3}} \right) &= \mathcal{O}\left(\left(\frac{Pn}{m}\right)^{\frac{2}{3}} \log P \cdot \alpha \right. \\ &+ \frac{\left(\frac{Pn}{m}\right)^{\frac{1}{3}} mn + n^2 \left(\frac{Pm^2}{n^2}\right)^{\frac{1}{3}}}{\left(\frac{Pm^2}{n^2}\right)^{\frac{1}{3}} \left(\frac{Pm^2}{n^2}\right)^{\frac{1}{3}}} \cdot \beta + \frac{n^3 \left(\frac{Pm^2}{n^2}\right)^{\frac{1}{3}} + n^2 m \left(\frac{Pn}{m}\right)^{\frac{1}{3}}}{\left(\frac{Pm^2}{n^2}\right)^{\frac{1}{3}}} \cdot \gamma \right) \end{aligned}$$
(1)
$$= \mathcal{O}\left(\left(\frac{Pn}{m}\right)^{\frac{2}{3}} \log P \cdot \alpha + \left(\frac{n^2m}{P}\right)^{\frac{2}{3}} \cdot \beta + \frac{n^2m}{P} \cdot \gamma \right) \end{aligned}$$

Grid shape	Metric	Cost
optimal	# of messages	$\mathcal{O}\left(\left(\frac{Pn}{m}\right)^{\frac{2}{3}}\log P\right)$
	# of words	$\mathcal{O}\left(\left(\frac{n^2m}{P}\right)^{\frac{2}{3}}\right)$
	# of flops	$\mathcal{O}\left(\frac{n^2m}{P}\right)$
	Memory footprint	$\mathcal{O}\left(\left(\frac{n^2m}{P}\right)^{\frac{2}{3}}\right)$