
communication-optimal QR factorizations:
performance and scalability on varying architectures

Edward Hutter and Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

Blue Waters Symposium 2019

Edward Hutter and Edgar Solomonik 1/28

Motivation for reducing algorithmic communication costs

Communication and synchronization increasingly dominating algorithm performance
on modern architectures

α− β − γ cost model

α - cost to send zero-byte message

β - cost to inject byte of data into network

γ - cost to perform flop with register-resident data

Architectural trend: α� β � γ

Communication-avoiding algorithms for most dense matrix factorizations present in
numerical libraries

Goal: A QR factorization algorithm that prioritizes minimizing synchronization and
communication cost

Our team uses BlueWaters to assess the scalability of new algorithms for numerical
tensor algebra at massively large scale

Edward Hutter and Edgar Solomonik 2/28

Motivation for reducing algorithmic communication costs

Communication and synchronization increasingly dominating algorithm performance
on modern architectures

α− β − γ cost model

α - cost to send zero-byte message

β - cost to inject byte of data into network

γ - cost to perform flop with register-resident data

Architectural trend: α� β � γ

Communication-avoiding algorithms for most dense matrix factorizations present in
numerical libraries

Goal: A QR factorization algorithm that prioritizes minimizing synchronization and
communication cost

Our team uses BlueWaters to assess the scalability of new algorithms for numerical
tensor algebra at massively large scale

Edward Hutter and Edgar Solomonik 2/28

Motivation for reducing algorithmic communication costs

Communication and synchronization increasingly dominating algorithm performance
on modern architectures

α− β − γ cost model

α - cost to send zero-byte message

β - cost to inject byte of data into network

γ - cost to perform flop with register-resident data

Architectural trend: α� β � γ

Communication-avoiding algorithms for most dense matrix factorizations present in
numerical libraries

Goal: A QR factorization algorithm that prioritizes minimizing synchronization and
communication cost

Our team uses BlueWaters to assess the scalability of new algorithms for numerical
tensor algebra at massively large scale

Edward Hutter and Edgar Solomonik 2/28

Motivation for reducing algorithmic communication costs

Communication and synchronization increasingly dominating algorithm performance
on modern architectures

α− β − γ cost model

α - cost to send zero-byte message

β - cost to inject byte of data into network

γ - cost to perform flop with register-resident data

Architectural trend: α� β � γ

Communication-avoiding algorithms for most dense matrix factorizations present in
numerical libraries

Goal: A QR factorization algorithm that prioritizes minimizing synchronization and
communication cost

Our team uses BlueWaters to assess the scalability of new algorithms for numerical
tensor algebra at massively large scale

Edward Hutter and Edgar Solomonik 2/28

Motivation for reducing algorithmic communication costs

Communication and synchronization increasingly dominating algorithm performance
on modern architectures

α− β − γ cost model

α - cost to send zero-byte message

β - cost to inject byte of data into network

γ - cost to perform flop with register-resident data

Architectural trend: α� β � γ

Communication-avoiding algorithms for most dense matrix factorizations present in
numerical libraries

Goal: A QR factorization algorithm that prioritizes minimizing synchronization and
communication cost

Our team uses BlueWaters to assess the scalability of new algorithms for numerical
tensor algebra at massively large scale

Edward Hutter and Edgar Solomonik 2/28

Motivation for reducing algorithmic communication costs

Communication and synchronization increasingly dominating algorithm performance
on modern architectures

α− β − γ cost model

α - cost to send zero-byte message

β - cost to inject byte of data into network

γ - cost to perform flop with register-resident data

Architectural trend: α� β � γ

Communication-avoiding algorithms for most dense matrix factorizations present in
numerical libraries

Goal: A QR factorization algorithm that prioritizes minimizing synchronization and
communication cost

Our team uses BlueWaters to assess the scalability of new algorithms for numerical
tensor algebra at massively large scale

Edward Hutter and Edgar Solomonik 2/28

Architecture trends: machine balance decreasing

machine launch year peak node perf
(Gflops/s)

peak injection bandwidth
(Gwords/sec)

machine balance
(words/flop)

ASCI Red 1997 0.666 0.4 1/1.665

ANL BG/P 2007 13.6 1 1/13.6

ONL Jaguar 2009 124.8 2.2 1/56

ANL BG/Q 2012 205 2 1/102.5

NCSA BlueWaters (XE) 2012 313.6 9.6 1/32

NCSA BlueWaters (XK) 2012 1320 9.6 1/137.5

ORNL Titan 2013 1320 8 1/165

ANL Theta 2017 3000+ 10.2 1/294

TACC Stampede2 2017 3000+ 12.5 1/240

LLNL Sierra 2018 28000 12.5 1/2240

ORNL Summit 2018 44000 12.5 1/3520

Higher arithmetic intensity →higher performance on new architectures

BlueWaters not a favorable machine for communication-avoiding algorithms

Edward Hutter and Edgar Solomonik 3/28

Architecture trends: machine balance decreasing

machine launch year peak node perf
(Gflops/s)

peak injection bandwidth
(Gwords/sec)

machine balance
(words/flop)

ASCI Red 1997 0.666 0.4 1/1.665

ANL BG/P 2007 13.6 1 1/13.6

ONL Jaguar 2009 124.8 2.2 1/56

ANL BG/Q 2012 205 2 1/102.5

NCSA BlueWaters (XE) 2012 313.6 9.6 1/32

NCSA BlueWaters (XK) 2012 1320 9.6 1/137.5

ORNL Titan 2013 1320 8 1/165

ANL Theta 2017 3000+ 10.2 1/294

TACC Stampede2 2017 3000+ 12.5 1/240

LLNL Sierra 2018 28000 12.5 1/2240

ORNL Summit 2018 44000 12.5 1/3520

Higher arithmetic intensity →higher performance on new architectures

BlueWaters not a favorable machine for communication-avoiding algorithms

Edward Hutter and Edgar Solomonik 3/28

Architecture trends: machine balance decreasing

machine launch year peak node perf
(Gflops/s)

peak injection bandwidth
(Gwords/sec)

machine balance
(words/flop)

ASCI Red 1997 0.666 0.4 1/1.665

ANL BG/P 2007 13.6 1 1/13.6

ONL Jaguar 2009 124.8 2.2 1/56

ANL BG/Q 2012 205 2 1/102.5

NCSA BlueWaters (XE) 2012 313.6 9.6 1/32

NCSA BlueWaters (XK) 2012 1320 9.6 1/137.5

ORNL Titan 2013 1320 8 1/165

ANL Theta 2017 3000+ 10.2 1/294

TACC Stampede2 2017 3000+ 12.5 1/240

LLNL Sierra 2018 28000 12.5 1/2240

ORNL Summit 2018 44000 12.5 1/3520

Higher arithmetic intensity →higher performance on new architectures

BlueWaters not a favorable machine for communication-avoiding algorithms

Edward Hutter and Edgar Solomonik 3/28

Communication-avoiding Cholesky-QR2 (CA-CQR2)

3D algorithms utilize available extra memory to reduce communication asymptotically.

We introduce CA-CQR2, a novel practical 3D QR factorization algorithm

extends CholeskyQR2 algorithm to arbitary m × n matrices across P processes

requires O
((

Pm2/n2
)1/6

)
less communication than known 2D QR algorithms

incurs a number of (increasingly profitable) tradeoffs
2− 4x more flops than Householder QR)
matrix must be sufficiently well-conditioned

requires O
(

(Pm/n)1/3
)

more memory than known 2D QR algorithms

All algorithms will be measured along the critical path instead of a volume measure

Figure: Horizontal (internode network) communication along critical path

Edward Hutter and Edgar Solomonik 4/28

Communication-avoiding Cholesky-QR2 (CA-CQR2)

3D algorithms utilize available extra memory to reduce communication asymptotically.

We introduce CA-CQR2, a novel practical 3D QR factorization algorithm

extends CholeskyQR2 algorithm to arbitary m × n matrices across P processes

requires O
((

Pm2/n2
)1/6

)
less communication than known 2D QR algorithms

incurs a number of (increasingly profitable) tradeoffs
2− 4x more flops than Householder QR)
matrix must be sufficiently well-conditioned

requires O
(

(Pm/n)1/3
)

more memory than known 2D QR algorithms

All algorithms will be measured along the critical path instead of a volume measure

Figure: Horizontal (internode network) communication along critical path

Edward Hutter and Edgar Solomonik 4/28

Communication-avoiding Cholesky-QR2 (CA-CQR2)

3D algorithms utilize available extra memory to reduce communication asymptotically.

We introduce CA-CQR2, a novel practical 3D QR factorization algorithm

extends CholeskyQR2 algorithm to arbitary m × n matrices across P processes

requires O
((

Pm2/n2
)1/6

)
less communication than known 2D QR algorithms

incurs a number of (increasingly profitable) tradeoffs
2− 4x more flops than Householder QR)
matrix must be sufficiently well-conditioned

requires O
(

(Pm/n)1/3
)

more memory than known 2D QR algorithms

All algorithms will be measured along the critical path instead of a volume measure

Figure: Horizontal (internode network) communication along critical path

Edward Hutter and Edgar Solomonik 4/28

Communication-avoiding Cholesky-QR2 (CA-CQR2)

3D algorithms utilize available extra memory to reduce communication asymptotically.

We introduce CA-CQR2, a novel practical 3D QR factorization algorithm

extends CholeskyQR2 algorithm to arbitary m × n matrices across P processes

requires O
((

Pm2/n2
)1/6

)
less communication than known 2D QR algorithms

incurs a number of (increasingly profitable) tradeoffs
2− 4x more flops than Householder QR)
matrix must be sufficiently well-conditioned

requires O
(

(Pm/n)1/3
)

more memory than known 2D QR algorithms

All algorithms will be measured along the critical path instead of a volume measure

Figure: Horizontal (internode network) communication along critical path

Edward Hutter and Edgar Solomonik 4/28

Communication-avoiding Cholesky-QR2 (CA-CQR2)

3D algorithms utilize available extra memory to reduce communication asymptotically.

We introduce CA-CQR2, a novel practical 3D QR factorization algorithm

extends CholeskyQR2 algorithm to arbitary m × n matrices across P processes

requires O
((

Pm2/n2
)1/6

)
less communication than known 2D QR algorithms

incurs a number of (increasingly profitable) tradeoffs
2− 4x more flops than Householder QR)
matrix must be sufficiently well-conditioned

requires O
(

(Pm/n)1/3
)

more memory than known 2D QR algorithms

All algorithms will be measured along the critical path instead of a volume measure

Figure: Horizontal (internode network) communication along critical path

Edward Hutter and Edgar Solomonik 4/28

Communication-avoiding Cholesky-QR2 (CA-CQR2)

3D algorithms utilize available extra memory to reduce communication asymptotically.

We introduce CA-CQR2, a novel practical 3D QR factorization algorithm

extends CholeskyQR2 algorithm to arbitary m × n matrices across P processes

requires O
((

Pm2/n2
)1/6

)
less communication than known 2D QR algorithms

incurs a number of (increasingly profitable) tradeoffs
2− 4x more flops than Householder QR)
matrix must be sufficiently well-conditioned

requires O
(

(Pm/n)1/3
)

more memory than known 2D QR algorithms

All algorithms will be measured along the critical path instead of a volume measure

Figure: Horizontal (internode network) communication along critical path

Edward Hutter and Edgar Solomonik 4/28

Communication-avoiding Cholesky-QR2 (CA-CQR2)

3D algorithms utilize available extra memory to reduce communication asymptotically.

We introduce CA-CQR2, a novel practical 3D QR factorization algorithm

extends CholeskyQR2 algorithm to arbitary m × n matrices across P processes

requires O
((

Pm2/n2
)1/6

)
less communication than known 2D QR algorithms

incurs a number of (increasingly profitable) tradeoffs
2− 4x more flops than Householder QR)
matrix must be sufficiently well-conditioned

requires O
(

(Pm/n)1/3
)

more memory than known 2D QR algorithms

All algorithms will be measured along the critical path instead of a volume measure

Figure: Horizontal (internode network) communication along critical path

Edward Hutter and Edgar Solomonik 4/28

QR Strong scaling performance

 0

 50

 100

 150

 200

 250

 300

512 1024 2048 4096 8192 16384 32768 65536

G
ig

a
fl
o

p
s
/s

/N
o

d
e

Processes

Strong Scaling: Stampede2 and BlueWaters, m/n=4096

ST2 ScaLAPACK

ST2 CA-CQR2

BW ScaLAPACK

BW CA-CQR2

Figure: Strong scaling for m × n matrices

Edward Hutter and Edgar Solomonik 5/28

QR Strong scaling performance

 0

 50

 100

 150

 200

 250

 300

512 1024 2048 4096 8192 16384 32768 65536

G
ig

a
fl
o

p
s
/s

/N
o

d
e

Processes

Strong Scaling on Stampede2 and BlueWaters, m/n=512

ST2 ScaLAPACK

ST2 CA-CQR2

BW ScaLAPACK

BW CA-CQR2

Figure: Strong scaling for m × n matrices

Edward Hutter and Edgar Solomonik 6/28

QR Strong scaling performance

 0

 50

 100

 150

 200

512 1024 2048 4096 8192 16384 32768 65536

G
ig

a
fl
o

p
s
/s

/N
o

d
e

Processes

Strong Scaling on Stampede2 and BlueWaters, m/n=64

ST2 ScaLAPACK

ST2 CA-CQR2

BW ScaLAPACK

BW CA-CQR2

Figure: Strong scaling for m × n matrices

Edward Hutter and Edgar Solomonik 7/28

QR Strong scaling performance

 0

 50

 100

 150

 200

512 1024 2048 4096 8192 16384 32768 65536

G
ig

a
fl
o

p
s
/s

/N
o

d
e

Processes

Strong Scaling on Stampede2 and BlueWaters, m/n=8

ST2 ScaLAPACK

ST2 CA-CQR2

BW ScaLAPACK

BW CA-CQR2

Figure: Strong scaling for m × n matrices

Edward Hutter and Edgar Solomonik 8/28

QR Strong scaling performance

 0

 50

 100

 150

 200

512 1024 2048 4096 8192 16384 32768 65536

G
ig

a
fl
o

p
s
/s

/N
o

d
e

Processes

Strong Scaling on Stampede2 and BlueWaters, m/n=1

ST2 ScaLAPACK

ST2 CA-CQR2

BW ScaLAPACK

BW CA-CQR2

Figure: Strong scaling for m × n matrices

Edward Hutter and Edgar Solomonik 9/28

Competing costs of parallel QR factorization of Am×n

ScaLAPACK’s PGEQRF is communication-optimal assuming minimal memory (2D)

Tα,βPGEQRF = O
(
n log P · α+

mn
√
P
· β
)

MPGEQRF = O(
mn

P
)

CAQR factors panels using TSQR to reduce synchronization1 (2D)

Tα,βCAQR = O
(√

P log2 P · α+
mn
√
P
· β
)

MCAQR = O(
mn

P
)

CA-CQR2 leverages extra memory to reduce communication (3D)

Tα,βCA-CQR2 = O

(Pn

m

) 2
3

log P · α+

(
n2m

P

) 2
3

· β

 MCA-CQR2 = O

(n2m

P

) 2
3

3D algorithms exist in theory2 3 4, but CA-CQR2 is the first practical approach5

1J. Demmel et al., ”Communication-optimal Parallel and Sequential QR and LU Factorizations”, SISC 2012
2A. Tiskin, ”Communication-efficient generic pairwise elimination”, Future Generation Computer Systems 2007
3E. Solomonik et al., ”A communication-avoiding parallel algorithm for the symmetric eigenvalue problem”, SPAA 2017
4G. Ballard et al., ”A 3D Parallel Algorithm for QR Decomposition”, SPAA 2018
5E. Hutter et al., ”Communication-avoiding CholeskyQR2 for rectangular matrices”, IPDPS 2019

Edward Hutter and Edgar Solomonik 10/28

Competing costs of parallel QR factorization of Am×n

ScaLAPACK’s PGEQRF is communication-optimal assuming minimal memory (2D)

Tα,βPGEQRF = O
(
n log P · α+

mn
√
P
· β
)

MPGEQRF = O(
mn

P
)

CAQR factors panels using TSQR to reduce synchronization1 (2D)

Tα,βCAQR = O
(√

P log2 P · α+
mn
√
P
· β
)

MCAQR = O(
mn

P
)

CA-CQR2 leverages extra memory to reduce communication (3D)

Tα,βCA-CQR2 = O

(Pn

m

) 2
3

log P · α+

(
n2m

P

) 2
3

· β

 MCA-CQR2 = O

(n2m

P

) 2
3

3D algorithms exist in theory2 3 4, but CA-CQR2 is the first practical approach5

1J. Demmel et al., ”Communication-optimal Parallel and Sequential QR and LU Factorizations”, SISC 2012
2A. Tiskin, ”Communication-efficient generic pairwise elimination”, Future Generation Computer Systems 2007
3E. Solomonik et al., ”A communication-avoiding parallel algorithm for the symmetric eigenvalue problem”, SPAA 2017
4G. Ballard et al., ”A 3D Parallel Algorithm for QR Decomposition”, SPAA 2018
5E. Hutter et al., ”Communication-avoiding CholeskyQR2 for rectangular matrices”, IPDPS 2019

Edward Hutter and Edgar Solomonik 10/28

Competing costs of parallel QR factorization of Am×n

ScaLAPACK’s PGEQRF is communication-optimal assuming minimal memory (2D)

Tα,βPGEQRF = O
(
n log P · α+

mn
√
P
· β
)

MPGEQRF = O(
mn

P
)

CAQR factors panels using TSQR to reduce synchronization1 (2D)

Tα,βCAQR = O
(√

P log2 P · α+
mn
√
P
· β
)

MCAQR = O(
mn

P
)

CA-CQR2 leverages extra memory to reduce communication (3D)

Tα,βCA-CQR2 = O

(Pn

m

) 2
3

log P · α+

(
n2m

P

) 2
3

· β

 MCA-CQR2 = O

(n2m

P

) 2
3

3D algorithms exist in theory2 3 4, but CA-CQR2 is the first practical approach5

1J. Demmel et al., ”Communication-optimal Parallel and Sequential QR and LU Factorizations”, SISC 2012
2A. Tiskin, ”Communication-efficient generic pairwise elimination”, Future Generation Computer Systems 2007
3E. Solomonik et al., ”A communication-avoiding parallel algorithm for the symmetric eigenvalue problem”, SPAA 2017
4G. Ballard et al., ”A 3D Parallel Algorithm for QR Decomposition”, SPAA 2018
5E. Hutter et al., ”Communication-avoiding CholeskyQR2 for rectangular matrices”, IPDPS 2019

Edward Hutter and Edgar Solomonik 10/28

Competing costs of parallel QR factorization of Am×n

ScaLAPACK’s PGEQRF is communication-optimal assuming minimal memory (2D)

Tα,βPGEQRF = O
(
n log P · α+

mn
√
P
· β
)

MPGEQRF = O(
mn

P
)

CAQR factors panels using TSQR to reduce synchronization1 (2D)

Tα,βCAQR = O
(√

P log2 P · α+
mn
√
P
· β
)

MCAQR = O(
mn

P
)

CA-CQR2 leverages extra memory to reduce communication (3D)

Tα,βCA-CQR2 = O

(Pn

m

) 2
3

log P · α+

(
n2m

P

) 2
3

· β

 MCA-CQR2 = O

(n2m

P

) 2
3

3D algorithms exist in theory2 3 4, but CA-CQR2 is the first practical approach5

1J. Demmel et al., ”Communication-optimal Parallel and Sequential QR and LU Factorizations”, SISC 2012
2A. Tiskin, ”Communication-efficient generic pairwise elimination”, Future Generation Computer Systems 2007
3E. Solomonik et al., ”A communication-avoiding parallel algorithm for the symmetric eigenvalue problem”, SPAA 2017
4G. Ballard et al., ”A 3D Parallel Algorithm for QR Decomposition”, SPAA 2018
5E. Hutter et al., ”Communication-avoiding CholeskyQR2 for rectangular matrices”, IPDPS 2019

Edward Hutter and Edgar Solomonik 10/28

Instability of Cholesky-QR

QR factorization algorithms used in practice stem from processes of orthogonal
triangularization for their superior numerical stability

QnQn−1 . . .Q1A = R

The Cholesky-QR algorithm is a simple algorithm that follows a numerically unstable
process of triangular orthogonalization

AR−1
1 R−1

2 . . .R−1
n = Q

[Q,R]← Cholesky-QR (A)

B ← ATA . B may be indefinite!
RTR ← B . Possible failure in Cholesky factorization!
Q ← AR−1 . R may have lost all accuracy! Q may lost orthogonality!

CholeskyQR2 leverages near-perfect conditioning of Q in a second iteration1

1Y. Yamamoto et al., ”Roundoff Error Analysis of the CholeskyQR2 algorithm”, Electron. Trans. Numer. Anal. 2015

Edward Hutter and Edgar Solomonik 11/28

Instability of Cholesky-QR

QR factorization algorithms used in practice stem from processes of orthogonal
triangularization for their superior numerical stability

QnQn−1 . . .Q1A = R

The Cholesky-QR algorithm is a simple algorithm that follows a numerically unstable
process of triangular orthogonalization

AR−1
1 R−1

2 . . .R−1
n = Q

[Q,R]← Cholesky-QR (A)

B ← ATA . B may be indefinite!
RTR ← B . Possible failure in Cholesky factorization!
Q ← AR−1 . R may have lost all accuracy! Q may lost orthogonality!

CholeskyQR2 leverages near-perfect conditioning of Q in a second iteration1

1Y. Yamamoto et al., ”Roundoff Error Analysis of the CholeskyQR2 algorithm”, Electron. Trans. Numer. Anal. 2015

Edward Hutter and Edgar Solomonik 11/28

Instability of Cholesky-QR

QR factorization algorithms used in practice stem from processes of orthogonal
triangularization for their superior numerical stability

QnQn−1 . . .Q1A = R

The Cholesky-QR algorithm is a simple algorithm that follows a numerically unstable
process of triangular orthogonalization

AR−1
1 R−1

2 . . .R−1
n = Q

[Q,R]← Cholesky-QR (A)

B ← ATA . B may be indefinite!
RTR ← B . Possible failure in Cholesky factorization!
Q ← AR−1 . R may have lost all accuracy! Q may lost orthogonality!

CholeskyQR2 leverages near-perfect conditioning of Q in a second iteration1

1Y. Yamamoto et al., ”Roundoff Error Analysis of the CholeskyQR2 algorithm”, Electron. Trans. Numer. Anal. 2015

Edward Hutter and Edgar Solomonik 11/28

Instability of Cholesky-QR

QR factorization algorithms used in practice stem from processes of orthogonal
triangularization for their superior numerical stability

QnQn−1 . . .Q1A = R

The Cholesky-QR algorithm is a simple algorithm that follows a numerically unstable
process of triangular orthogonalization

AR−1
1 R−1

2 . . .R−1
n = Q

[Q,R]← Cholesky-QR (A)

B ← ATA . B may be indefinite!
RTR ← B . Possible failure in Cholesky factorization!
Q ← AR−1 . R may have lost all accuracy! Q may lost orthogonality!

CholeskyQR2 leverages near-perfect conditioning of Q in a second iteration1

1Y. Yamamoto et al., ”Roundoff Error Analysis of the CholeskyQR2 algorithm”, Electron. Trans. Numer. Anal. 2015

Edward Hutter and Edgar Solomonik 11/28

Scalability of Cholesky-QR2

Cholesky-QR2 (CQR2) can achieve superior performance on tall-and-skinny matrices1

Householder QR - 2mn2 − 2n3

3
flops, Cholesky-QR2 - 4mn2 + 5n3

3
flops

CQR2 attains minimal communication cost (by O(log P)), yet simple implementation

TCholesky-QR2 (m, n,P) = O
(

log P · α+ n2 · β +

(
n2m

P
+ n3

)
· γ
)

CA-CQR2 parallelizes Cholesky-QR2 over a 3D processor grid, efficiently factoring
any rectangular matrix

1T. Fukaya et al., ”CholeskyQR2: A communication-avoiding algorithm”, ScalA 2014

Edward Hutter and Edgar Solomonik 12/28

Scalability of Cholesky-QR2

Cholesky-QR2 (CQR2) can achieve superior performance on tall-and-skinny matrices1

Householder QR - 2mn2 − 2n3

3
flops, Cholesky-QR2 - 4mn2 + 5n3

3
flops

CQR2 attains minimal communication cost (by O(log P)), yet simple implementation

TCholesky-QR2 (m, n,P) = O
(

log P · α+ n2 · β +

(
n2m

P
+ n3

)
· γ
)

CA-CQR2 parallelizes Cholesky-QR2 over a 3D processor grid, efficiently factoring
any rectangular matrix

1T. Fukaya et al., ”CholeskyQR2: A communication-avoiding algorithm”, ScalA 2014

Edward Hutter and Edgar Solomonik 12/28

Scalability of Cholesky-QR2

Cholesky-QR2 (CQR2) can achieve superior performance on tall-and-skinny matrices1

Householder QR - 2mn2 − 2n3

3
flops, Cholesky-QR2 - 4mn2 + 5n3

3
flops

CQR2 attains minimal communication cost (by O(log P)), yet simple implementation

TCholesky-QR2 (m, n,P) = O
(

log P · α+ n2 · β +

(
n2m

P
+ n3

)
· γ
)

CA-CQR2 parallelizes Cholesky-QR2 over a 3D processor grid, efficiently factoring
any rectangular matrix

1T. Fukaya et al., ”CholeskyQR2: A communication-avoiding algorithm”, ScalA 2014

Edward Hutter and Edgar Solomonik 12/28

Scalability of Cholesky-QR2

Cholesky-QR2 (CQR2) can achieve superior performance on tall-and-skinny matrices1

Householder QR - 2mn2 − 2n3

3
flops, Cholesky-QR2 - 4mn2 + 5n3

3
flops

CQR2 attains minimal communication cost (by O(log P)), yet simple implementation

TCholesky-QR2 (m, n,P) = O
(

log P · α+ n2 · β +

(
n2m

P
+ n3

)
· γ
)

CA-CQR2 parallelizes Cholesky-QR2 over a 3D processor grid, efficiently factoring
any rectangular matrix

1T. Fukaya et al., ”CholeskyQR2: A communication-avoiding algorithm”, ScalA 2014

Edward Hutter and Edgar Solomonik 12/28

Scalability of Cholesky-QR2

Cholesky-QR2 (CQR2) can achieve superior performance on tall-and-skinny matrices1

Householder QR - 2mn2 − 2n3

3
flops, Cholesky-QR2 - 4mn2 + 5n3

3
flops

CQR2 attains minimal communication cost (by O(log P)), yet simple implementation

TCholesky-QR2 (m, n,P) = O
(

log P · α+ n2 · β +

(
n2m

P
+ n3

)
· γ
)

CA-CQR2 parallelizes Cholesky-QR2 over a 3D processor grid, efficiently factoring
any rectangular matrix

1T. Fukaya et al., ”CholeskyQR2: A communication-avoiding algorithm”, ScalA 2014

Edward Hutter and Edgar Solomonik 12/28

CA-CQR2’s communication-optimal parallelization

CA-CQR2 leverages known 3D algorithms for matrix multiplication1 and Cholesky
factorization2

A tunable 3D processor grid of dimensions c × d × c determines the replication factor
(c), the communication reduction (

√
c), and the number of simultaneous instances of

3D algorithms (d/c)

Figure: Computation of Gram matrix ATA

Cost: O((log c + log d/c) · α+
(

mn
dc

+ n2

c2

)
· β +

(
mn2

dc2 + n2

c2

)
· γ

1Bersten 1989, ”Communication-efficient matrix multiplication on hypercubes”, Aggarwal, Chandra, Snir 1990, ”Communication
complexity of PRAMs”, Agarwal et al. 1995, ”A three-dimensional approach to parallel matrix multiplication”

2A. Tiskin 2007, ”Communication-efficient generic pairwise elimination”, Future Generation Computer Systems 2007

Edward Hutter and Edgar Solomonik 13/28

CA-CQR2’s communication-optimal parallelization

CA-CQR2 leverages known 3D algorithms for matrix multiplication1 and Cholesky
factorization2

A tunable 3D processor grid of dimensions c × d × c determines the replication factor
(c), the communication reduction (

√
c), and the number of simultaneous instances of

3D algorithms (d/c)

Figure: Computation of Gram matrix ATA

Cost: O((log c + log d/c) · α+
(

mn
dc

+ n2

c2

)
· β +

(
mn2

dc2 + n2

c2

)
· γ

1Bersten 1989, ”Communication-efficient matrix multiplication on hypercubes”, Aggarwal, Chandra, Snir 1990, ”Communication
complexity of PRAMs”, Agarwal et al. 1995, ”A three-dimensional approach to parallel matrix multiplication”

2A. Tiskin 2007, ”Communication-efficient generic pairwise elimination”, Future Generation Computer Systems 2007

Edward Hutter and Edgar Solomonik 13/28

CA-CQR2’s communication-optimal parallelization

CA-CQR2 leverages known 3D algorithms for matrix multiplication1 and Cholesky
factorization2

A tunable 3D processor grid of dimensions c × d × c determines the replication factor
(c), the communication reduction (

√
c), and the number of simultaneous instances of

3D algorithms (d/c)

Figure: Computation of Gram matrix ATA

Cost: O((log c + log d/c) · α+
(

mn
dc

+ n2

c2

)
· β +

(
mn2

dc2 + n2

c2

)
· γ

1Bersten 1989, ”Communication-efficient matrix multiplication on hypercubes”, Aggarwal, Chandra, Snir 1990, ”Communication
complexity of PRAMs”, Agarwal et al. 1995, ”A three-dimensional approach to parallel matrix multiplication”

2A. Tiskin 2007, ”Communication-efficient generic pairwise elimination”, Future Generation Computer Systems 2007

Edward Hutter and Edgar Solomonik 13/28

CA-CQR2’s communication-optimal parallelization

CA-CQR2 leverages known 3D algorithms for matrix multiplication1 and Cholesky
factorization2

A tunable 3D processor grid of dimensions c × d × c determines the replication factor
(c), the communication reduction (

√
c), and the number of simultaneous instances of

3D algorithms (d/c)

Figure: d
c simultaneous 3D Cholesky on cubes of dimension c

Cost: O
(
c2 log c3 · α+ n2

c2 · β + n3

c3 · γ
)

1Bersten 1989, ”Communication-efficient matrix multiplication on hypercubes”, Aggarwal, Chandra, Snir 1990, ”Communication
complexity of PRAMs”, Agarwal et al. 1995, ”A three-dimensional approach to parallel matrix multiplication”

2A. Tiskin 2007, ”Communication-efficient generic pairwise elimination”, Future Generation Computer Systems 2007

Edward Hutter and Edgar Solomonik 14/28

CA-CQR2’s communication-optimal parallelization

CA-CQR2 leverages known 3D algorithms for matrix multiplication1 and Cholesky
factorization2

A tunable 3D processor grid of dimensions c × d × c determines the replication factor
(c), the communication reduction (

√
c), and the number of simultaneous instances of

3D algorithms (d/c)

Figure: d
c simultaneous 3D MatMul / TRSM on cubes of dimension c

Cost: O
(

log c3 · α+ n2

c2 · β + n3

c3 · γ
)

1Bersten 1989, ”Communication-efficient matrix multiplication on hypercubes”, Aggarwal, Chandra, Snir 1990, ”Communication
complexity of PRAMs”, Agarwal et al. 1995, ”A three-dimensional approach to parallel matrix multiplication”

2A. Tiskin 2007, ”Communication-efficient generic pairwise elimination”, Future Generation Computer Systems 2007

Edward Hutter and Edgar Solomonik 15/28

Algorithmic cost analysis: CA-CQR2 vs. competition

CA-CQR2’s cost expression expresses tunable tradeoffs

Tα−βCA-CQR2 (m, n, c, d) = O
(
c2 log(d/c) · α+

(mn

dc
+

n2

c2

)
· β +

(mn2

c2d
+

n3

c3

)
· γ
)

Requiring each processor to own a square submatrix (m
d

= n
c

) and enforcing P = c2d ,
CA-CQR2 finds an optimal processor grid that supports minimal communication

1D Cholesky-QR2 2D ScaLAPACK 2D CAQR 3D CA-CQR2

messages O (log P) O(n log P) O
(√

P log2 P
)

O
((

Pn
m

) 2
3

log P

)
words O

(
n2
)

O(mn√
P

) O(mn√
P

) O
((

n2m
P

) 2
3

)
flops O

(
n2m
P

+ n3
)

O(mn2

P
) O(mn2

P
) O

(
n2m
P

)
memory O

(
mn
P

+ n2
)

O(mn
P

) O(mn
P

) O
((

n2m
P

) 2
3

)
Minimal communication cost in a QR factorization is reflected by the surface area of
the cubic volume of O(mn2/P) computation

Edward Hutter and Edgar Solomonik 16/28

Algorithmic cost analysis: CA-CQR2 vs. competition

CA-CQR2’s cost expression expresses tunable tradeoffs

Tα−βCA-CQR2 (m, n, c, d) = O
(
c2 log(d/c) · α+

(mn

dc
+

n2

c2

)
· β +

(mn2

c2d
+

n3

c3

)
· γ
)

Requiring each processor to own a square submatrix (m
d

= n
c

) and enforcing P = c2d ,
CA-CQR2 finds an optimal processor grid that supports minimal communication

1D Cholesky-QR2 2D ScaLAPACK 2D CAQR 3D CA-CQR2

messages O (log P) O(n log P) O
(√

P log2 P
)

O
((

Pn
m

) 2
3

log P

)
words O

(
n2
)

O(mn√
P

) O(mn√
P

) O
((

n2m
P

) 2
3

)
flops O

(
n2m
P

+ n3
)

O(mn2

P
) O(mn2

P
) O

(
n2m
P

)
memory O

(
mn
P

+ n2
)

O(mn
P

) O(mn
P

) O
((

n2m
P

) 2
3

)
Minimal communication cost in a QR factorization is reflected by the surface area of
the cubic volume of O(mn2/P) computation

Edward Hutter and Edgar Solomonik 16/28

Algorithmic cost analysis: CA-CQR2 vs. competition

CA-CQR2’s cost expression expresses tunable tradeoffs

Tα−βCA-CQR2 (m, n, c, d) = O
(
c2 log(d/c) · α+

(mn

dc
+

n2

c2

)
· β +

(mn2

c2d
+

n3

c3

)
· γ
)

Requiring each processor to own a square submatrix (m
d

= n
c

) and enforcing P = c2d ,
CA-CQR2 finds an optimal processor grid that supports minimal communication

1D Cholesky-QR2

2D ScaLAPACK 2D CAQR 3D CA-CQR2

messages O (log P)

O(n log P) O
(√

P log2 P
)

O
((

Pn
m

) 2
3

log P

)

words O
(
n2
)

O(mn√
P

) O(mn√
P

) O
((

n2m
P

) 2
3

)

flops O
(

n2m
P

+ n3
)

O(mn2

P
) O(mn2

P
) O

(
n2m
P

)

memory O
(
mn
P

+ n2
)

O(mn
P

) O(mn
P

) O
((

n2m
P

) 2
3

)
Minimal communication cost in a QR factorization is reflected by the surface area of
the cubic volume of O(mn2/P) computation

Edward Hutter and Edgar Solomonik 16/28

Algorithmic cost analysis: CA-CQR2 vs. competition

CA-CQR2’s cost expression expresses tunable tradeoffs

Tα−βCA-CQR2 (m, n, c, d) = O
(
c2 log(d/c) · α+

(mn

dc
+

n2

c2

)
· β +

(mn2

c2d
+

n3

c3

)
· γ
)

Requiring each processor to own a square submatrix (m
d

= n
c

) and enforcing P = c2d ,
CA-CQR2 finds an optimal processor grid that supports minimal communication

1D Cholesky-QR2 2D ScaLAPACK

2D CAQR 3D CA-CQR2

messages O (log P) O(n log P)

O
(√

P log2 P
)

O
((

Pn
m

) 2
3

log P

)

words O
(
n2
)

O(mn√
P

)

O(mn√
P

) O
((

n2m
P

) 2
3

)

flops O
(

n2m
P

+ n3
)

O(mn2

P
)

O(mn2

P
) O

(
n2m
P

)

memory O
(
mn
P

+ n2
)

O(mn
P

)

O(mn
P

) O
((

n2m
P

) 2
3

)
Minimal communication cost in a QR factorization is reflected by the surface area of
the cubic volume of O(mn2/P) computation

Edward Hutter and Edgar Solomonik 16/28

Algorithmic cost analysis: CA-CQR2 vs. competition

CA-CQR2’s cost expression expresses tunable tradeoffs

Tα−βCA-CQR2 (m, n, c, d) = O
(
c2 log(d/c) · α+

(mn

dc
+

n2

c2

)
· β +

(mn2

c2d
+

n3

c3

)
· γ
)

Requiring each processor to own a square submatrix (m
d

= n
c

) and enforcing P = c2d ,
CA-CQR2 finds an optimal processor grid that supports minimal communication

1D Cholesky-QR2 2D ScaLAPACK 2D CAQR

3D CA-CQR2

messages O (log P) O(n log P) O
(√

P log2 P
)

O
((

Pn
m

) 2
3

log P

)

words O
(
n2
)

O(mn√
P

) O(mn√
P

)

O
((

n2m
P

) 2
3

)

flops O
(

n2m
P

+ n3
)

O(mn2

P
) O(mn2

P
)

O
(

n2m
P

)

memory O
(
mn
P

+ n2
)

O(mn
P

) O(mn
P

)

O
((

n2m
P

) 2
3

)
Minimal communication cost in a QR factorization is reflected by the surface area of
the cubic volume of O(mn2/P) computation

Edward Hutter and Edgar Solomonik 16/28

Algorithmic cost analysis: CA-CQR2 vs. competition

CA-CQR2’s cost expression expresses tunable tradeoffs

Tα−βCA-CQR2 (m, n, c, d) = O
(
c2 log(d/c) · α+

(mn

dc
+

n2

c2

)
· β +

(mn2

c2d
+

n3

c3

)
· γ
)

Requiring each processor to own a square submatrix (m
d

= n
c

) and enforcing P = c2d ,
CA-CQR2 finds an optimal processor grid that supports minimal communication

1D Cholesky-QR2 2D ScaLAPACK 2D CAQR 3D CA-CQR2

messages O (log P) O(n log P) O
(√

P log2 P
)

O
((

Pn
m

) 2
3

log P

)
words O

(
n2
)

O(mn√
P

) O(mn√
P

) O
((

n2m
P

) 2
3

)
flops O

(
n2m
P

+ n3
)

O(mn2

P
) O(mn2

P
) O

(
n2m
P

)
memory O

(
mn
P

+ n2
)

O(mn
P

) O(mn
P

) O
((

n2m
P

) 2
3

)

Minimal communication cost in a QR factorization is reflected by the surface area of
the cubic volume of O(mn2/P) computation

Edward Hutter and Edgar Solomonik 16/28

Algorithmic cost analysis: CA-CQR2 vs. competition

CA-CQR2’s cost expression expresses tunable tradeoffs

Tα−βCA-CQR2 (m, n, c, d) = O
(
c2 log(d/c) · α+

(mn

dc
+

n2

c2

)
· β +

(mn2

c2d
+

n3

c3

)
· γ
)

Requiring each processor to own a square submatrix (m
d

= n
c

) and enforcing P = c2d ,
CA-CQR2 finds an optimal processor grid that supports minimal communication

1D Cholesky-QR2 2D ScaLAPACK 2D CAQR 3D CA-CQR2

messages O (log P) O(n log P) O
(√

P log2 P
)

O
((

Pn
m

) 2
3

log P

)
words O

(
n2
)

O(mn√
P

) O(mn√
P

) O
((

n2m
P

) 2
3

)
flops O

(
n2m
P

+ n3
)

O(mn2

P
) O(mn2

P
) O

(
n2m
P

)
memory O

(
mn
P

+ n2
)

O(mn
P

) O(mn
P

) O
((

n2m
P

) 2
3

)
Minimal communication cost in a QR factorization is reflected by the surface area of
the cubic volume of O(mn2/P) computation

Edward Hutter and Edgar Solomonik 16/28

Implementation and Experiment setup

We factor m × n matrices with m� n to highlight the effect CA-CQR2’s
communication reduction and algorithmic tradeoffs have on performance

Scaling studies highlight interplay between CA-CQR2’s increased arithmetic intensity
and an architecture’s machine balance

ratio of peak-flops to network bandwidth is 8x higher on Stampede21 than
BlueWaters2

We show only the most-performant variants at each node count of CA-CQR2 and
ScaLAPACK’s PGEQRF

ScaLAPACK tuned over 2D processor grid dimensions and block sizes

CA-CQR2 tuned over processor grid dimensions d and c

each tested/tuned over a number of resource configurations

both algorithms use Householder’s flop cost in determining performance

1Intel Knights Landing (KNL) cluster at TACC
2Cray XE/XK hybrid machine at NCSA

Edward Hutter and Edgar Solomonik 17/28

Implementation and Experiment setup

We factor m × n matrices with m� n to highlight the effect CA-CQR2’s
communication reduction and algorithmic tradeoffs have on performance

Scaling studies highlight interplay between CA-CQR2’s increased arithmetic intensity
and an architecture’s machine balance

ratio of peak-flops to network bandwidth is 8x higher on Stampede21 than
BlueWaters2

We show only the most-performant variants at each node count of CA-CQR2 and
ScaLAPACK’s PGEQRF

ScaLAPACK tuned over 2D processor grid dimensions and block sizes

CA-CQR2 tuned over processor grid dimensions d and c

each tested/tuned over a number of resource configurations

both algorithms use Householder’s flop cost in determining performance

1Intel Knights Landing (KNL) cluster at TACC
2Cray XE/XK hybrid machine at NCSA

Edward Hutter and Edgar Solomonik 17/28

Implementation and Experiment setup

We factor m × n matrices with m� n to highlight the effect CA-CQR2’s
communication reduction and algorithmic tradeoffs have on performance

Scaling studies highlight interplay between CA-CQR2’s increased arithmetic intensity
and an architecture’s machine balance

ratio of peak-flops to network bandwidth is 8x higher on Stampede21 than
BlueWaters2

We show only the most-performant variants at each node count of CA-CQR2 and
ScaLAPACK’s PGEQRF

ScaLAPACK tuned over 2D processor grid dimensions and block sizes

CA-CQR2 tuned over processor grid dimensions d and c

each tested/tuned over a number of resource configurations

both algorithms use Householder’s flop cost in determining performance

1Intel Knights Landing (KNL) cluster at TACC
2Cray XE/XK hybrid machine at NCSA

Edward Hutter and Edgar Solomonik 17/28

Implementation and Experiment setup

We factor m × n matrices with m� n to highlight the effect CA-CQR2’s
communication reduction and algorithmic tradeoffs have on performance

Scaling studies highlight interplay between CA-CQR2’s increased arithmetic intensity
and an architecture’s machine balance

ratio of peak-flops to network bandwidth is 8x higher on Stampede21 than
BlueWaters2

We show only the most-performant variants at each node count of CA-CQR2 and
ScaLAPACK’s PGEQRF

ScaLAPACK tuned over 2D processor grid dimensions and block sizes

CA-CQR2 tuned over processor grid dimensions d and c

each tested/tuned over a number of resource configurations

both algorithms use Householder’s flop cost in determining performance

1Intel Knights Landing (KNL) cluster at TACC
2Cray XE/XK hybrid machine at NCSA

Edward Hutter and Edgar Solomonik 17/28

Deeper analysis into Strong Scaling results

Table: Strong scaling: CA-CQR2 performance relative to ScaLAPACK

m
/n

co
m

pu
ta

ti
on

51
2

P
E

s

10
24

P
E

s
20

48
P

E
s

40
96

P
E

s
81

92
P

E
s

16
38

4
P

E
s

32
76

8
P

E
s

65
53

6
P

E
s

BlueWaters 4096 2.00x 1.01x 0.88x 0.70x 0.62x 0.62x 0.73x 1.00x -
BlueWaters 512 2.00x 0.51x 0.48x 0.51x 0.56x 0.66 0.86x 1.36x -
BlueWaters 64 2.02x 0.51x 0.53x 0.53x 0.61x 0.73x 0.91x 0.92 -
BlueWaters 8 2.20x 0.53x 0.54x 0.55x 0.72x 0.75x 0.67x 0.47x -
Blue Waters 1 4.25x 0.26x 0.21x 0.18x 0.27x 0.21x 0.13x 0.13x -

Stampede2 4096 2.00x - - - 0.70x 1.02x 1.27x 1.72x 3.13x
Stampede2 512 2.00x - - - 0.52x 0.99x 1.47x 2.01x 3.34x
Stampede2 64 2.02x - - - 0.77x 1.19x 1.59x 1.82x 2.61x
Stampede2 8 2.20x - - - 0.77x 1.00x 1.21x 1.36x 1.60x
Stampede2 1 4.25x - - - 0.48x 0.55x 0.66x 1.41x 1.02x

Edward Hutter and Edgar Solomonik 18/28

Deeper analysis into Strong Scaling results

Table: Strong scaling: CA-CQR2 performance relative to ScaLAPACK

m
/n

co
m

pu
ta

ti
on

51
2

P
E

s

10
24

P
E

s
20

48
P

E
s

40
96

P
E

s
81

92
P

E
s

16
38

4
P

E
s

32
76

8
P

E
s

65
53

6
P

E
s

BlueWaters 4096 2.00x 1.01x 0.88x 0.70x 0.62x 0.62x 0.73x 1.00x -
BlueWaters 512 2.00x 0.51x 0.48x 0.51x 0.56x 0.66 0.86x 1.36x -
BlueWaters 64 2.02x 0.51x 0.53x 0.53x 0.61x 0.73x 0.91x 0.92 -
BlueWaters 8 2.20x 0.53x 0.54x 0.55x 0.72x 0.75x 0.67x 0.47x -
Blue Waters 1 4.25x 0.26x 0.21x 0.18x 0.27x 0.21x 0.13x 0.13x -

Stampede2 4096 2.00x - - - 0.70x 1.02x 1.27x 1.72x 3.13x
Stampede2 512 2.00x - - - 0.52x 0.99x 1.47x 2.01x 3.34x
Stampede2 64 2.02x - - - 0.77x 1.19x 1.59x 1.82x 2.61x
Stampede2 8 2.20x - - - 0.77x 1.00x 1.21x 1.36x 1.60x
Stampede2 1 4.25x - - - 0.48x 0.55x 0.66x 1.41x 1.02x

Edward Hutter and Edgar Solomonik 19/28

Deeper analysis into Strong Scaling results

Table: Strong scaling: CA-CQR2 performance relative to ScaLAPACK

m
/n

co
m

pu
ta

ti
on

51
2

P
E

s

10
24

P
E

s
20

48
P

E
s

40
96

P
E

s
81

92
P

E
s

16
38

4
P

E
s

32
76

8
P

E
s

65
53

6
P

E
s

BlueWaters 4096 2.00x 1.01x 0.88x 0.70x 0.62x 0.62x 0.73x 1.00x -
BlueWaters 512 2.00x 0.51x 0.48x 0.51x 0.56x 0.66 0.86x 1.36x -
BlueWaters 64 2.02x 0.51x 0.53x 0.53x 0.61x 0.73x 0.91x 0.92 -
BlueWaters 8 2.20x 0.53x 0.54x 0.55x 0.72x 0.75x 0.67x 0.47x -
Blue Waters 1 4.25x 0.26x 0.21x 0.18x 0.27x 0.21x 0.13x 0.13x -

Stampede2 4096 2.00x - - - 0.70x 1.02x 1.27x 1.72x 3.13x
Stampede2 512 2.00x - - - 0.52x 0.99x 1.47x 2.01x 3.34x
Stampede2 64 2.02x - - - 0.77x 1.19x 1.59x 1.82x 2.61x
Stampede2 8 2.20x - - - 0.77x 1.00x 1.21x 1.36x 1.60x
Stampede2 1 4.25x - - - 0.48x 0.55x 0.66x 1.41x 1.02x

Edward Hutter and Edgar Solomonik 20/28

Deeper analysis into Strong Scaling results

Table: Strong scaling: CA-CQR2 performance relative to ScaLAPACK

m
/n

co
m

pu
ta

ti
on

51
2

P
E

s

10
24

P
E

s
20

48
P

E
s

40
96

P
E

s
81

92
P

E
s

16
38

4
P

E
s

32
76

8
P

E
s

65
53

6
P

E
s

BlueWaters 4096 2.00x 1.01x 0.88x 0.70x 0.62x 0.62x 0.73x 1.00x -
BlueWaters 512 2.00x 0.51x 0.48x 0.51x 0.56x 0.66 0.86x 1.36x -
BlueWaters 64 2.02x 0.51x 0.53x 0.53x 0.61x 0.73x 0.91x 0.92 -
BlueWaters 8 2.20x 0.53x 0.54x 0.55x 0.72x 0.75x 0.67x 0.47x -
Blue Waters 1 4.25x 0.26x 0.21x 0.18x 0.27x 0.21x 0.13x 0.13x -

Stampede2 4096 2.00x - - - 0.70x 1.02x 1.27x 1.72x 3.13x
Stampede2 512 2.00x - - - 0.52x 0.99x 1.47x 2.01x 3.34x
Stampede2 64 2.02x - - - 0.77x 1.19x 1.59x 1.82x 2.61x
Stampede2 8 2.20x - - - 0.77x 1.00x 1.21x 1.36x 1.60x
Stampede2 1 4.25x - - - 0.48x 0.55x 0.66x 1.41x 1.02x

Edward Hutter and Edgar Solomonik 21/28

Deeper analysis into Strong Scaling results

Table: Strong scaling: CA-CQR2 performance relative to ScaLAPACK

m
/n

co
m

pu
ta

ti
on

51
2

P
E

s

10
24

P
E

s
20

48
P

E
s

40
96

P
E

s
81

92
P

E
s

16
38

4
P

E
s

32
76

8
P

E
s

65
53

6
P

E
s

BlueWaters 4096 2.00x 1.01x 0.88x 0.70x 0.62x 0.62x 0.73x 1.00x -
BlueWaters 512 2.00x 0.51x 0.48x 0.51x 0.56x 0.66 0.86x 1.36x -
BlueWaters 64 2.02x 0.51x 0.53x 0.53x 0.61x 0.73x 0.91x 0.92 -
BlueWaters 8 2.20x 0.53x 0.54x 0.55x 0.72x 0.75x 0.67x 0.47x -
Blue Waters 1 4.25x 0.26x 0.21x 0.18x 0.27x 0.21x 0.13x 0.13x -

Stampede2 4096 2.00x - - - 0.70x 1.02x 1.27x 1.72x 3.13x
Stampede2 512 2.00x - - - 0.52x 0.99x 1.47x 2.01x 3.34x
Stampede2 64 2.02x - - - 0.77x 1.19x 1.59x 1.82x 2.61x
Stampede2 8 2.20x - - - 0.77x 1.00x 1.21x 1.36x 1.60x
Stampede2 1 4.25x - - - 0.48x 0.55x 0.66x 1.41x 1.02x

Edward Hutter and Edgar Solomonik 22/28

QR Strong scaling critical path analysis

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

S2 BW S2 BW S2 BW S2 BW

T
im

e
 (

s
)

524288 x 2048 matrix: Stampede2 (S2) vs. BlueWaters (BW)

Computation

Communication

Overlap

4096 PEs2048 PEs1024 PEs512 PEs

Edward Hutter and Edgar Solomonik 23/28

QR Strong scaling critical path analysis

 0

 1

 2

 3

 4

 5

 6

 7

S2 BW S2 BW S2 BW S2 BW

T
im

e
 (

s
)

131072 x 4096 matrix: Stampede2 (S2) vs. BlueWaters (BW)

Computation

Communication

Overlap

4096 PEs2048 PEs1024 PEs512 PEs

Edward Hutter and Edgar Solomonik 24/28

QR Strong scaling critical path analysis

 0

 1

 2

 3

 4

 5

 6

 7

 8

S2 BW S2 BW S2 BW S2 BW

T
im

e
 (

s
)

32768 x 8192 matrix: Stampede2 (S2) vs. BlueWaters (BW)

Computation

Communication

Overlap

4096 PEs2048 PEs1024 PEs512 PEs

Edward Hutter and Edgar Solomonik 25/28

Analysis and Future Work

CA-CQR2’s performance improvements over ScaLAPACK on Stampede2 range from
1.1 - 3.3x at 1024 nodes

CA-CQR2 leverages current and future architectural trends

machines with highest ratio of peak node performance to peak injection
bandwidth will benefit most

asymptotic communication reductuction increasingly evident as we scale, despite
overheads in synchronization and computation

These results motivate increasingly wide overdetermined systems, a critical use case
for solving linear least squares and eigenvalue problems

Offloading computation to GPUs on XK nodes is a work in progress

Our study shows that communication-optimal parallel QR factorizations can achieve
superior performance and scaling up to thousands of nodes1 2

1Our preprint detailing CA-CQR2 can be found at https://arxiv.org/abs/1710.08471
2Our C++ implementation can be found at https://github.com/huttered40/CA-CQR2

Edward Hutter and Edgar Solomonik 26/28

Analysis and Future Work

CA-CQR2’s performance improvements over ScaLAPACK on Stampede2 range from
1.1 - 3.3x at 1024 nodes

CA-CQR2 leverages current and future architectural trends

machines with highest ratio of peak node performance to peak injection
bandwidth will benefit most

asymptotic communication reductuction increasingly evident as we scale, despite
overheads in synchronization and computation

These results motivate increasingly wide overdetermined systems, a critical use case
for solving linear least squares and eigenvalue problems

Offloading computation to GPUs on XK nodes is a work in progress

Our study shows that communication-optimal parallel QR factorizations can achieve
superior performance and scaling up to thousands of nodes1 2

1Our preprint detailing CA-CQR2 can be found at https://arxiv.org/abs/1710.08471
2Our C++ implementation can be found at https://github.com/huttered40/CA-CQR2

Edward Hutter and Edgar Solomonik 26/28

Analysis and Future Work

CA-CQR2’s performance improvements over ScaLAPACK on Stampede2 range from
1.1 - 3.3x at 1024 nodes

CA-CQR2 leverages current and future architectural trends

machines with highest ratio of peak node performance to peak injection
bandwidth will benefit most

asymptotic communication reductuction increasingly evident as we scale, despite
overheads in synchronization and computation

These results motivate increasingly wide overdetermined systems, a critical use case
for solving linear least squares and eigenvalue problems

Offloading computation to GPUs on XK nodes is a work in progress

Our study shows that communication-optimal parallel QR factorizations can achieve
superior performance and scaling up to thousands of nodes1 2

1Our preprint detailing CA-CQR2 can be found at https://arxiv.org/abs/1710.08471
2Our C++ implementation can be found at https://github.com/huttered40/CA-CQR2

Edward Hutter and Edgar Solomonik 26/28

Analysis and Future Work

CA-CQR2’s performance improvements over ScaLAPACK on Stampede2 range from
1.1 - 3.3x at 1024 nodes

CA-CQR2 leverages current and future architectural trends

machines with highest ratio of peak node performance to peak injection
bandwidth will benefit most

asymptotic communication reductuction increasingly evident as we scale, despite
overheads in synchronization and computation

These results motivate increasingly wide overdetermined systems, a critical use case
for solving linear least squares and eigenvalue problems

Offloading computation to GPUs on XK nodes is a work in progress

Our study shows that communication-optimal parallel QR factorizations can achieve
superior performance and scaling up to thousands of nodes1 2

1Our preprint detailing CA-CQR2 can be found at https://arxiv.org/abs/1710.08471
2Our C++ implementation can be found at https://github.com/huttered40/CA-CQR2

Edward Hutter and Edgar Solomonik 26/28

Analysis and Future Work

CA-CQR2’s performance improvements over ScaLAPACK on Stampede2 range from
1.1 - 3.3x at 1024 nodes

CA-CQR2 leverages current and future architectural trends

machines with highest ratio of peak node performance to peak injection
bandwidth will benefit most

asymptotic communication reductuction increasingly evident as we scale, despite
overheads in synchronization and computation

These results motivate increasingly wide overdetermined systems, a critical use case
for solving linear least squares and eigenvalue problems

Offloading computation to GPUs on XK nodes is a work in progress

Our study shows that communication-optimal parallel QR factorizations can achieve
superior performance and scaling up to thousands of nodes1 2

1Our preprint detailing CA-CQR2 can be found at https://arxiv.org/abs/1710.08471
2Our C++ implementation can be found at https://github.com/huttered40/CA-CQR2

Edward Hutter and Edgar Solomonik 26/28

Cyclops Tensor Framework (CTF)

https://github.com/cyclops-community/ctf

MPI sparse/dense tensors + OpenMP and CUDA acceleration

Matrix <int > A(n, n, AS|SP , World(MPI_COMM_WORLD));

Tensor <float > T(order , is_sparse , dims , syms , ring , world);

T.read(...); T.write(...); T.slice(...); T.permute(...);

parallel contraction/summation/transformation of tensors

Z["abij"] += V["ijab"]; // C++

W["mnij"] += 0.5*W["mnef"]*T["efij"]; // C++

M["ij"] += Function < >([](double x){ return 1/x; })(v["j"]);

W.i("mnij") << 0.5*W.i("mnef")*T.i("efij") // Python

[Z,SC,C] = Z.i("abk").svd("abc","kc",rank) // Python

einsum("mnef ,efij ->mnij",W,T) // numpy -style Python

Cyclops applications (some using Blue Waters): tensor decomposition, tensor
completion, tensor networks (DMRG), quantum chemistry, quantum circuit
simulation, graph algorithms, bioinformatics

Edward Hutter and Edgar Solomonik 27/28

https://github.com/cyclops-community/ctf

Cyclops Tensor Framework (CTF)

https://github.com/cyclops-community/ctf

MPI sparse/dense tensors + OpenMP and CUDA acceleration

Matrix <int > A(n, n, AS|SP , World(MPI_COMM_WORLD));

Tensor <float > T(order , is_sparse , dims , syms , ring , world);

T.read(...); T.write(...); T.slice(...); T.permute(...);

parallel contraction/summation/transformation of tensors

Z["abij"] += V["ijab"]; // C++

W["mnij"] += 0.5*W["mnef"]*T["efij"]; // C++

M["ij"] += Function < >([](double x){ return 1/x; })(v["j"]);

W.i("mnij") << 0.5*W.i("mnef")*T.i("efij") // Python

[Z,SC,C] = Z.i("abk").svd("abc","kc",rank) // Python

einsum("mnef ,efij ->mnij",W,T) // numpy -style Python

Cyclops applications (some using Blue Waters): tensor decomposition, tensor
completion, tensor networks (DMRG), quantum chemistry, quantum circuit
simulation, graph algorithms, bioinformatics

Edward Hutter and Edgar Solomonik 27/28

https://github.com/cyclops-community/ctf

Cyclops Tensor Framework (CTF)

https://github.com/cyclops-community/ctf

MPI sparse/dense tensors + OpenMP and CUDA acceleration

Matrix <int > A(n, n, AS|SP , World(MPI_COMM_WORLD));

Tensor <float > T(order , is_sparse , dims , syms , ring , world);

T.read(...); T.write(...); T.slice(...); T.permute(...);

parallel contraction/summation/transformation of tensors

Z["abij"] += V["ijab"]; // C++

W["mnij"] += 0.5*W["mnef"]*T["efij"]; // C++

M["ij"] += Function < >([](double x){ return 1/x; })(v["j"]);

W.i("mnij") << 0.5*W.i("mnef")*T.i("efij") // Python

[Z,SC,C] = Z.i("abk").svd("abc","kc",rank) // Python

einsum("mnef ,efij ->mnij",W,T) // numpy -style Python

Cyclops applications (some using Blue Waters): tensor decomposition, tensor
completion, tensor networks (DMRG), quantum chemistry, quantum circuit
simulation, graph algorithms, bioinformatics

Edward Hutter and Edgar Solomonik 27/28

https://github.com/cyclops-community/ctf

Acknowledgements

We’d also like to acknowledge NCSA and TACC for providing benchmarking resources

Texas Advanced Computing Center (TACC) via Stampede22

National Center for Supercomputing Applications (NCSA) via Blue Waters3

I’d like to acknowledge the Department of Energy and Krell Institute for supporting
this research via awarding me a DOE Computational Science Graduate Fellowship1

1Grant number DE-SC0019323
2Allocation TG-CCR180006
3Awards OCI-0725070 and ACI-1238993

Edward Hutter and Edgar Solomonik 28/28

Conditional stability of Cholesky-QR2

The Cholesky-QR2 algorithm can achieve stability through iterative refinement1

[Q,R]← Cholesky-QR2 (A)

Z ,R1 ← CQR(A)
Q,R2 ← CQR(Z)
R ← R2R1

leverages near-perfect conditioning of Z in a second iteration1

A = ZR1 = QR2R1, from ATA = RT
1 ZTZR1 = RT

1 RT
2 QTQR2R1, where R2

corrects initial R1

numerical breakdown still possible if first iteration loses positive definiteness in
ATA via κ(A) ≤ 1/

√
ε

Shifted Cholesky-QR2 can attain a stable factorization for any matrix κ(A) ≤ 1/ε

the eigenvalues of ATA are shifted to prevent loss of positive definiteness

three Cholesky-QR iterations required, essentially 3− 6x more flops than
Householder approaches

1Y. Yamamoto et al., ”Roundoff Error Analysis of the CholeskyQR2 algorithm”, Electron. Trans. Numer. Anal. 2015
2T. Fukaya et al., ”Shifted CholeskyQR for computing the QR factorization of ill-conditioned matrices”, Arxiv 2018

Edward Hutter and Edgar Solomonik 1/7

Conditional stability of Cholesky-QR2

The Cholesky-QR2 algorithm can achieve stability through iterative refinement1

[Q,R]← Cholesky-QR2 (A)

Z ,R1 ← CQR(A)
Q,R2 ← CQR(Z)
R ← R2R1

leverages near-perfect conditioning of Z in a second iteration1

A = ZR1 = QR2R1, from ATA = RT
1 ZTZR1 = RT

1 RT
2 QTQR2R1, where R2

corrects initial R1

numerical breakdown still possible if first iteration loses positive definiteness in
ATA via κ(A) ≤ 1/

√
ε

Shifted Cholesky-QR2 can attain a stable factorization for any matrix κ(A) ≤ 1/ε

the eigenvalues of ATA are shifted to prevent loss of positive definiteness

three Cholesky-QR iterations required, essentially 3− 6x more flops than
Householder approaches

1Y. Yamamoto et al., ”Roundoff Error Analysis of the CholeskyQR2 algorithm”, Electron. Trans. Numer. Anal. 2015
2T. Fukaya et al., ”Shifted CholeskyQR for computing the QR factorization of ill-conditioned matrices”, Arxiv 2018

Edward Hutter and Edgar Solomonik 1/7

Conditional stability of Cholesky-QR2

The Cholesky-QR2 algorithm can achieve stability through iterative refinement1

[Q,R]← Cholesky-QR2 (A)

Z ,R1 ← CQR(A)
Q,R2 ← CQR(Z)
R ← R2R1

leverages near-perfect conditioning of Z in a second iteration1

A = ZR1 = QR2R1, from ATA = RT
1 ZTZR1 = RT

1 RT
2 QTQR2R1, where R2

corrects initial R1

numerical breakdown still possible if first iteration loses positive definiteness in
ATA via κ(A) ≤ 1/

√
ε

Shifted Cholesky-QR2 can attain a stable factorization for any matrix κ(A) ≤ 1/ε

the eigenvalues of ATA are shifted to prevent loss of positive definiteness

three Cholesky-QR iterations required, essentially 3− 6x more flops than
Householder approaches

1Y. Yamamoto et al., ”Roundoff Error Analysis of the CholeskyQR2 algorithm”, Electron. Trans. Numer. Anal. 2015
2T. Fukaya et al., ”Shifted CholeskyQR for computing the QR factorization of ill-conditioned matrices”, Arxiv 2018

Edward Hutter and Edgar Solomonik 1/7

Conditional stability of Cholesky-QR2

The Cholesky-QR2 algorithm can achieve stability through iterative refinement1

[Q,R]← Cholesky-QR2 (A)

Z ,R1 ← CQR(A)
Q,R2 ← CQR(Z)
R ← R2R1

leverages near-perfect conditioning of Z in a second iteration1

A = ZR1 = QR2R1, from ATA = RT
1 ZTZR1 = RT

1 RT
2 QTQR2R1, where R2

corrects initial R1

numerical breakdown still possible if first iteration loses positive definiteness in
ATA via κ(A) ≤ 1/

√
ε

Shifted Cholesky-QR2 can attain a stable factorization for any matrix κ(A) ≤ 1/ε

the eigenvalues of ATA are shifted to prevent loss of positive definiteness

three Cholesky-QR iterations required, essentially 3− 6x more flops than
Householder approaches

1Y. Yamamoto et al., ”Roundoff Error Analysis of the CholeskyQR2 algorithm”, Electron. Trans. Numer. Anal. 2015
2T. Fukaya et al., ”Shifted CholeskyQR for computing the QR factorization of ill-conditioned matrices”, Arxiv 2018

Edward Hutter and Edgar Solomonik 1/7

Conditional stability of Cholesky-QR2

The Cholesky-QR2 algorithm can achieve stability through iterative refinement1

[Q,R]← Cholesky-QR2 (A)

Z ,R1 ← CQR(A)
Q,R2 ← CQR(Z)
R ← R2R1

leverages near-perfect conditioning of Z in a second iteration1

A = ZR1 = QR2R1, from ATA = RT
1 ZTZR1 = RT

1 RT
2 QTQR2R1, where R2

corrects initial R1

numerical breakdown still possible if first iteration loses positive definiteness in
ATA via κ(A) ≤ 1/

√
ε

Shifted Cholesky-QR2 can attain a stable factorization for any matrix κ(A) ≤ 1/ε

the eigenvalues of ATA are shifted to prevent loss of positive definiteness

three Cholesky-QR iterations required, essentially 3− 6x more flops than
Householder approaches

1Y. Yamamoto et al., ”Roundoff Error Analysis of the CholeskyQR2 algorithm”, Electron. Trans. Numer. Anal. 2015
2T. Fukaya et al., ”Shifted CholeskyQR for computing the QR factorization of ill-conditioned matrices”, Arxiv 2018

Edward Hutter and Edgar Solomonik 1/7

Conditional stability of Cholesky-QR2

The Cholesky-QR2 algorithm can achieve stability through iterative refinement1

[Q,R]← Cholesky-QR2 (A)

Z ,R1 ← CQR(A)
Q,R2 ← CQR(Z)
R ← R2R1

leverages near-perfect conditioning of Z in a second iteration1

A = ZR1 = QR2R1, from ATA = RT
1 ZTZR1 = RT

1 RT
2 QTQR2R1, where R2

corrects initial R1

numerical breakdown still possible if first iteration loses positive definiteness in
ATA via κ(A) ≤ 1/

√
ε

Shifted Cholesky-QR2 can attain a stable factorization for any matrix κ(A) ≤ 1/ε

the eigenvalues of ATA are shifted to prevent loss of positive definiteness

three Cholesky-QR iterations required, essentially 3− 6x more flops than
Householder approaches

1Y. Yamamoto et al., ”Roundoff Error Analysis of the CholeskyQR2 algorithm”, Electron. Trans. Numer. Anal. 2015
2T. Fukaya et al., ”Shifted CholeskyQR for computing the QR factorization of ill-conditioned matrices”, Arxiv 2018

Edward Hutter and Edgar Solomonik 1/7

CA-CQR2 building block #1 – 3D Matrix Multiplication

Figure: 3D algorithm for square matrix multiplication 1 2 3

T3D MM (n,P) = O
(

log P · α+
n2

P
2
3

· β +
n3

P
· γ
)

1Bersten 1989, ”Communication-efficient matrix multiplication on hypercubes”
2Aggarwal, Chandra, Snir 1990, ”Communication complexity of PRAMs”
3Agarwal et al. 1995, ”A three-dimensional approach to parallel matrix multiplication”

Edward Hutter and Edgar Solomonik 2/7

CA-CQR2 building block #2 – 3D CholeskyInverse

We can embed the recursive definitions of Cholesky factorization and triangular
inverse to find matrices R,R−1

Tuning the recursion tree yields a tradeoff in horizontal bandwidth and
synchronization1

[L, L−1]← CholeskyInverse (A)[
L11 L

−1
11

]
← CholeskyInverse(A11)

L21 ← A21L
−T
11[

L22 L
−1
22

]
← CholeskyInverse(A22 − L21L

T
21)

L
−1
21
← −L

−1
22

L21L
−1
11

TCholeskyInverse3D (n, P) = O
(
P

2
3 log P · α +

n2

P
2
3

· β +
n3

P
· γ
)

TScaLAPACK (n, P) = O
(
√
P log P · α +

n2

√
P
· β +

n3

P
· γ
)

1A. Tiskin 2007, ”Communication-efficient generic pairwise elimination”

Edward Hutter and Edgar Solomonik 3/7

CA-CQR2 – Computation of Gram matrix

Figure: Start with a tunable c × d × c processor grid

Edward Hutter and Edgar Solomonik 4/7

CA-CQR2 – Computation of Gram matrix

Figure: Broadcast columns of A

Cost: 2 log2 c · α+ 2mn
dc
· β

Edward Hutter and Edgar Solomonik 4/7

CA-CQR2 – Computation of Gram matrix

Figure: Reduce contiguous groups of size c

Cost: 2 log2 c · α+ 2n2

c2 · β + n2

c2 · γ

Edward Hutter and Edgar Solomonik 4/7

CA-CQR2 – Computation of Gram matrix

Figure: Allreduce alternating groups of size d
c

Cost: 2 log2
d
c
· α+ 2n2

c2 · β + n2

c2 · γ

Edward Hutter and Edgar Solomonik 4/7

CA-CQR2 – Computation of Gram matrix

Figure: Broadcast missing pieces of B along depth

Cost: 2 log2 c · α+ 2n2

c2 · β

Edward Hutter and Edgar Solomonik 4/7

CA-CQR2 – Computation of CholeskyInverse

Figure: d
c simultaneous 3D CholeskyInverse on cubes of dimension c

Cost: O
(
c2 log c3 · α+ n2

c2 · β + n3

c3 · γ
)

Edward Hutter and Edgar Solomonik 5/7

CA-CQR2 – Computation of triangular solve

Figure: d
c simultaneous 3D matrix multiplication or TRSM on cubes of dimension c

Cost: O(log2 c
3 · α+

(
mn
dc

+ n2+nc
c2

)
· β + n2m

c2d
· γ)

Edward Hutter and Edgar Solomonik 6/7

Optimum cost of CholesyQR2 Tunable

The advantage of using a tunable grid lies in the ability to frame the shape of the grid around the shape of rectangular m × n matrix A.
Optimal communication can be attained by ensuring that the grid perfectly fits the dimensions of A, or that the dimensions of the grid are

proportional to the dimensions of the matrix. We derive the cost for the optimal ratio m
d

= n
c

below. Using equation P = c2d and

m
d

= n
c

, solve for d, c in terms of m, n, P. Solving the system of equations yields c =
(
Pn
m

) 1
3 , d =

(
Pm2

n2

) 1
3 . We can plug

these values into the cost of Cholesky-QR2 Tunable to find the optimal cost.

T
α−β
Cholesky-QR2 Tunable

m, n,

(
Pn

m

) 1
3
,

 Pm2

n2

 1
3

 = O
((

Pn

m

) 2
3

log P · α

+

(
Pn
m

) 1
3 mn + n2

(
Pm2

n2

) 1
3

(
Pm2

n2

) 1
3
(
Pn
m

) 2
3

· β +

n3
(

Pm2

n2

) 1
3 + n2m

(
Pn
m

) 1
3

(
Pn
m

) (
Pm2

n2

) 1
3

· γ
)

= O
((

Pn

m

) 2
3

log P · α +

 n2m

P

 2
3
· β +

n2m

P
· γ
)

(1)

Grid shape Metric Cost

optimal

of messages O
((

Pn
m

) 2
3 log P

)

of words O

(n2m
P

) 2
3

of flops O

(
n2m
P

)
Memory footprint O

(n2m
P

) 2
3

Edward Hutter and Edgar Solomonik 7/7

	Appendix

