

Deep Learning at Scale: A Paradigm Shift for Multi-Messenger Astrophysics

Eliu Huerta
Gravity Group
gravity.ncsa.illinois.edu

National Center for Supercomputing Applications
Computational Science and Engineering Faculty Fellow
Department of Astronomy
University of Illinois at Urbana-Champaign

NCSA Blue Waters Symposium for Petascale Science and Beyond June 4th 2019

NCSA | National Center for Supercomputing Applications

Masses in the Stellar Graveyard in Solar Masses LIGO-Virgo Black

ILLINOIS

NCSA | National Center for Supercomputing Applications

Listen to and observe cosmic mergers

Listen to, observe and feel cosmic explosions in the nearby Universe

Gravitational Wave Astrophysics

- Dynamical assembly of black hole and neutron star binaries in dense stellar environments
- Use gravitational waves to probe the existence of these sources
- Can we actually detect these signals with available algorithms?
- What can we learn from the observation of dynamically assembled compact binaries?

Physics of Eccentric Binary Black Hole Mergers

Huerta *et al.*, arXiv: 1901.07038

NCSA | National Center for Supercomputing Applications

Gravitational Wave Astrophysics

Rebei, Huerta, Wang, et al., arXiv:1807.09787

$$h(t) = \sum_{i=\{+,\times\}} h_i(\theta,\phi) F_i(\alpha,\beta,\psi)$$
$$SNR^2 = 4\Re \int_{f_0}^{f_{\text{max}}} \frac{\tilde{h}\tilde{h}^*}{S_n(f)} df$$

Observations

Models and simulations

Scientific Discovery

Theory

 $G_{\mu\nu} = 8\pi T_{\mu\nu}$

Routine: black hole and neutron star collisions
Future: supernovae, oscillating neutron

stars....

Sources, Signals and Searches

Number of observations increases with the detectors' sensitivity

Localization improves with a global detector network

IN ANY COMMUNITY OF SCIENTISTS, THERE ARE SOME INDIVIDUALS WHO ARE BOLDER THAN MOST.

THESE SCIENTISTS, JUDGING THAT A CRISIS EXISTS, EMBARK ON REVOLUTIONARY SCIENCE, EXPLORING ALTERNATIVES TO LONG-HELD, OBVIOUS-SEEMING ASSUMPTIONS.

OCCASIONALLY THIS GENERATES A RIVAL TO THE ESTABLISHED FRAMEWORK OF THOUGHT.

THE NEW CANDIDATE PARADIGM WILL APPEAR TO BE ACCOMPANIED BY NUMEROUS ANOMALIES, PARTLY BECAUSE IT IS STILL SO NEW AND INCOMPLETE.

THE MAJORITY OF THE SCIENTIFIC COMMUNITY WILL OPPOSE ANY CONCEPTUAL CHANGE, AND SO THEY SHOULD.

TO FULFILL ITS POTENTIAL, A SCIENTIFIC COMMUNITY NEEDS TO CONTAIN BOTH INDIVIDUALS WHO ARE BOLD AND INDIVIDUALS WHO ARE CONSERVATIVE. THERE ARE MANY EXAMPLES IN THE HISTORY OF SCIENCE IN WHICH CONFIDENCE IN THE ESTABLISHED FRAME OF THOUGHT WAS EVENTUALLY VINDICATED.

IT IS ALMOST IMPOSSIBLE TO PREDICT WHETHER THE ANOMALIES IN A CANDIDATE FOR A NEW PARADIGM WILL EVENTUALLY BE RESOLVED.

THOSE SCIENTISTS WHO POSSESS AN EXCEPTIONAL ABILITY TO RECOGNIZE A THEORY'S POTENTIAL WILL BE THE FIRST WHOSE PREFERENCE IS LIKELY TO SHIFT IN FAVOUR OF THE CHALLENGING PARADIGM.

THERE TYPICALLY FOLLOWS A PERIOD IN WHICH THERE ARE ADHERENTS OF BOTH PARADIGMS. IN TIME, IF THE CHALLENGING PARADIGM IS SOLIDIFIED AND UNIFIED, IT WILL REPLACE THE OLD PARADIGM, AND A PARADIGM SHIFT WILL HAVE OCCURRED.

Thomas Kuhn, The Structure of Scientific Revolution

Multi-Messenger Astronomy has taken off!

Swift transition from "first detection era" to discovery at scale

Binary black holes observations are now routine!

Several Multi-Messenger observations may take place in LIGO-Virgo third observing run

Pressing need to maximize discovery

Deep Learning

From optimism to breakthroughs in technology and science

Deep Learning From optimism to breakthroughs in Harness the Data Revolution to ARTIFICIAL INTELLIGENCE maximize discovery Early artificial intelligence in the MACHINE stirs excitement. LEARNING Big Data Era Machine learning begins to flourish. LEARNING Deep learning breakthroughs drive Al boom. 00101 10101 **End of** 110101 Dennard **Scaling** 1950's 1960's 1970's 1980's 1990's 2000's 2010's

High Performance Computing

Understand sources with numerical relativity

Datasets of numerical relativity waveforms to train and test neural nets

Train neural nets with distributed computing

Innovative Hardware Architectures

Develop state-of-the-art neural nets with large datasets

Accelerate data processing and inference

Fully trained neural nets are computationally efficient and portable

Applicable to any time-series datasets

Faster then real time classification and regression

Faster and deeper gravitational wave searches

The rise of deep learning for gravitational wave astrophysics

Deep learning for real-time classification and regression of gravitational waves in simulated LIGO noise George & Huerta,

Phys. Rev. D

January 2017

Deep learning for real-time classification and regression of gravitational waves in real advanced LIGO noise George & Huerta,

Physics Letters B

November 2017

Deep learning at scale for realtime gravitational wave parameter estimation and tests of general relativity Shen, Huerta & Zhao, March 2019 arXiv:1903.01998

4

1

Deep Learning for Gravitational Wave Astrophysics

Deep learning for classification of gravitational waves in simulated noise Gabbard et al., *PRL*, December 2017

First generation of neural network models for gravitational wave detection

Simple architectures 2-D black hole binary signal manifold Small training data sets

George & Huerta, Phys. Rev. D 97, 044039 Classification and regression in simulated LIGO noise

Follow-up studies a year later:

Classification of 2-D BBH signals in simulated LIGO noise:

Gabbard et al., PRL 120, 141103 (2018)

Xilong Fan et al., Sci.China Phys.Mech.Astron. 62 (2019)

From pioneering work to production scale applications

First application of deep learning at scale to characterize a 4-D signal manifold with 10M+ templates

Shen, Huerta and Zhao, arXiv:1903.01998

Inference of the properties of the binary components before and after merger

Parameter estimation studies are now endowed with a solid statistical backbone

From pioneering work to production scale applications

Shen, Huerta and Zhao, arXiv:1903.01998

EVENT NAME	$m_1[{ m M}_{\odot}]$	$m_2[{ m M}_{\odot}]$	a_f	ω_R	ω_I
GW150914	37.46 [4.13 0.06]	30.80 [0.43 -1.65]	0.689 [0.037 0.17]	0.5362 [0.0127 -0.20]	0.0798 [0.0011 0.16]
GW151012	23.89 [0.35 1.65]	17.34 [0.56 1.44]	0.653 [0.009 0.25]	0.5214 [0.0030 0.15]	$0.0810 \ [0.0003 -0.15]$
GW151226	17.60 [2.01 0.87]	14.14 [2.85 0.73]	0.646 [0.006 1.53]	$0.5188 \ [0.0021 \ 1.51]$	0.0812 [0.0001 -1.60]
GW170104	36.45 [1.54 - 0.76]	21.83 [3.54 -0.56]	0.661 [0.080 -0.84]	0.5185 [0.0306 -0.48]	$0.0816 \ [0.0029] \ 0.57]$
GW170608	13.96 [1.13] 1.10]	11.96 [1.07 1.56]	0.697 [0.025 -1.28]	0.5278 [0.0154 -0.95]	0.0809 [0.0011 -0.67]
GW170729	48.61 [1.58]-1.61]	37.69 [1.82]-0.28]	0.694 [0.019] - 0.47]	0.5102 [0.0107 -0.50]	0.0812 [0.0019] - 0.16]
GW170809	31.01 [3.29] 0.60]	22.42 [4.56 1.85]	0.698 [0.034 -1.23]	0.5428 [0.0163 -1.15]	0.0779 [0.0016 - 1.05]
GW170814	35.07 [1.75 0.84]	21.50 [0.52 0.99]	0.718 [0.010 -1.89]	0.5377 [0.0108 -1.38]	0.0794 [0.0003 1.76]
GW170818	40.05 [1.29 -1.57]	24.08 [0.93 -1.33]	0.656 [0.015] 0.73]	0.5129 [0.0043 1.21]	0.0816 [0.0005 -1.02]
$\underline{\text{GW}170823}$	39.56 [1.75 - 1.44]	30.14 [0.53 -1.68]	$0.740 \ [0.002 -1.76]$	$0.5510 \ [0.0007 -1.74]$	0.0782 [0.0001 1.75]

Training and testing datasets from numerical relativity simulations

Convergence of HPC and HDA

Observational data to train, validate and test neural network models

Theory to inform the design of deep learning models

 $G_{\mu\nu} = 8\pi T_{\mu\nu}$

Routine: black hole and neutron star collisions
Future: supernovae, oscillating neutron

stars....

Gravitational Wave Cosmology

We need galaxy catalogs Gravitational waves can enable siren measurements of

No ele

Schutz, N

Deep Learning for DES data science

From the citizen science revolution using the Sloan Digital Sky Survey...

... to large scale discovery using unlabeled images in the Dark Energy Survey using deep learning

Khan, Huerta, Wang, Gruendl, Jennings and Zheng, arXiv:1812.02183 Accepted to Physics Letters B

Xception neural network model

François Chollet, arXiv:1610.02357

State-of-the-art model for computer vision

Convergence of deep transfer learning, distributed training, data clustering, and recursive training

State-of-the-art galaxy classification

Scalable method for the construction of galaxy catalogs in the Dark Energy Survey

Platform for next-generation electromagnetic surveys

Deep Learning for DES data science

Khan, Huerta, Wang, Gruendl, Jennings and Zheng, arXiv:1812.02183

NCSA-Argonne Data Science Program

Unlabelled DES

10k+ raw, unlabeled galaxy images from DES clustered according to morphology using RGB filters

Scalable approach to curate datasets, and to construct large-scale galaxy catalogs

See viz at https://www.youtube.com/watch?v=n5rl573i6ws

Predicted DES elliptical galaxies by our neural network model

Khan, Huerta, Wang, Gruendl, Jennings and Zheng, arXiv:1812.02183

Deep transfer learning combined with distributed training for cosmology

Training is completed within 8 minutes achieving state-of-the-art classification accuracy

Training done at the Cooley supercomputer at Argonne National Lab

Conclusions

- Deep learning can be seamlessly applied to enhance the science reach of gravitational wave astrophysics and gravitational wave cosmology
- Harnessing the data revolution encompass data fusion, and convergence of deep learning with large scale computing
- Design a new type of deep learning algorithms at scale to characterize 4-D+ signal manifolds
- Deep learning for Multi-Messenger Astrophysics is just taking off!

IN ANY COMMUNITY OF SCIENTISTS, THERE ARE SOME INDIVIDUALS WHO ARE BOLDER THAN MOST.

THESE SCIENTISTS, JUDGING THAT A CRISIS EXISTS, EMBARK ON REVOLUTIONARY SCIENCE, EXPLORING ALTERNATIVES TO LONG-HELD, OBVIOUS-SEEMING ASSUMPTIONS.

OCCASIONALLY THIS GENERATES A RIVAL TO THE ESTABLISHED FRAMEWORK OF THOUGHT.

THE NEW CANDIDATE PARADIGM WILL APPEAR TO BE ACCOMPANIED BY NUMEROUS ANOMALIES, PARTLY BECAUSE IT IS STILL SO NEW AND INCOMPLETE.

THE MAJORITY OF THE SCIENTIFIC COMMUNITY WILL OPPOSE ANY CONCEPTUAL CHANGE, AND SO THEY SHOULD.

TO FULFILL ITS POTENTIAL, A SCIENTIFIC COMMUNITY NEEDS TO CONTAIN BOTH INDIVIDUALS WHO ARE BOLD AND INDIVIDUALS WHO ARE CONSERVATIVE. THERE ARE MANY EXAMPLES IN THE HISTORY OF SCIENCE IN WHICH CONFIDENCE IN THE ESTABLISHED FRAME OF THOUGHT WAS EVENTUALLY VINDICATED.

IT IS ALMOST IMPOSSIBLE TO PREDICT WHETHER THE ANOMALIES IN A CANDIDATE FOR A NEW PARADIGM WILL EVENTUALLY BE RESOLVED.

THOSE SCIENTISTS WHO POSSESS AN EXCEPTIONAL ABILITY TO RECOGNIZE A THEORY'S POTENTIAL WILL BE THE FIRST WHOSE PREFERENCE IS LIKELY TO SHIFT IN FAVOUR OF THE CHALLENGING PARADIGM.

THERE TYPICALLY FOLLOWS A PERIOD IN WHICH THERE ARE ADHERENTS OF BOTH PARADIGMS. IN TIME, IF THE CHALLENGING PARADIGM IS SOLIDIFIED AND UNIFIED, IT WILL REPLACE THE OLD PARADIGM, AND A PARADIGM SHIFT WILL HAVE OCCURRED.

Thomas Kuhn, The Structure of Scientific Revolution