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Background
Boundary-Layer-Induced Pressure Fluctuations

q Pressure fluctuations (p’) 
induced by supersonic 
turbulent boundary layers
§ Theoretical significance

- Vorticity dynamics (high 
vorticity ó low pressure)

- turbulence modeling (pressure-
strain terms in the transport 
equations for the Reynolds 
stresses) (Pope 2000)

§ Engineering applications
- p’w à vibrational loading of 

flight vehicles
- p’∞ à freestream noise of 

supersonic wind tunnels 

Motivation: Reentry-Vehicle Vibration

19

Vehicle vibration is a maximum 
when a reentry vehicle 
undergoes boundary layer 
transition.
� Pressure fluctuations peak during 

boundary-layer transition.
� Need to model fluctuations and spatial 

distribution as input to studying 
potential fluid-structure interactions.

� Need to understand physics behind 
fluid-structure interactions.
� No hypersonic experimental FSI work 

that we are aware of.

Vehicle Vibration
(Casper et al. 2016)

p’w

Wind-tunnel Freestream Noise
(Beckwith and Miller, 1990)

p’∞
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Flow

Laminar Tunnel-Wall 
Boundary Layer

Upstream 
Disturbance

Turbulent Tunnel-Wall 
Boundary LayerTransition 

Test Rhombus 
Acoustic Radiation 

Shadowgraph of the 
radiated noise from a 
Mach 3.5 tunnel-wall 

turbulent boundary layer 
(courtesy of NASA 

Langley)

In a conventional tunnel (M∞ > 2.5), tunnel noise is dominated by acoustic 
radiation from turbulent boundary layers on tunnel side-walls (Laufer, 1964)

Background
Application: Freestream noise in High-Speed Wind-Tunnel Facilities 

Blanchard et al. 1997
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Background
Boundary-Layer-Induced Pressure Fluctuations

§ Limited understanding of global pressure field induced by high-speed 
turbulent boundary layers
• theory

– unable to predict detailed pressure spectrum
• experiment

– unable to measure instantaneous spatial pressure distribution
– susceptible to measurement errors (Beresh 2011)

• computation
– largely limited to incompressible boundary layers 
– freestream pressure fluctuations not studied

§ Direct Numerical Simulation (DNS) is used to investigate boundary-
layer-induced pressure field 
• statistical and spectral scaling of pressure
• large-scale pressure structures 
• correlation between regions of extreme pressure and extreme vorticity
• acoustic radiation in the free stream 



§ Single, flat wall configuration (Duan et 
al., JFM 2014, 2016, Zhang et al. JFM, 2017)

• Developed a DNS database of BL 
acoustic radiation
- M∞ = 2.5 - 14
- Tw/Tr = 0.18 - 1.0
- Reτ ≈ 400 – 2000 

• Axisymmetric nozzle configuration
(Huang et al. AIAA-2017-0067; Duan et al. AIAA-
2018-0347)
– Effect of axisymmetry on turbulent BLs 

and their acoustic radiation 
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Focus of Current Project
Boundary-Layer-Induced Pressure Fluctuations

Single, flat wall

turbulent BL

Acoustic radiation

Axisymmetric nozzle



§ World-class computing capabilities of Blue Waters required for DNS of 
turbulent boundary layers and boundary-layer-induced noise at high 
Reynolds numbers 
• Extremely fine meshes required to fully resolve all turbulence/acoustics scales
• Large domain sizes needed to locate very-large-scale coherent structures
• large number of time steps required for the study of low-frequency behavior of 

the pressure spectrum

§ Production runs require at least 1,000 compute nodes for production 
science (“High-scalable” runs)
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Why Blue Waters?
Boundary-Layer-Induced Pressure Fluctuations



Outline

§ DNS methodology 
§ Software workflow

• Domain Decomposition Strategy
• I/O requirement
• Parallel Performance

§ Results of Domain Science
• Boundary-layer-induced pressure statistics & structures

• Boundary-layer freestream radiation 

§ Summary
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Background
DNS for Compressible Turbulent Boundary Layers

§ Conflicting requirements for numerical schemes 
• Shock capturing requires numerical dissipation
• Turbulence needs to reduce numerical dissipation
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Flow Numerical schlieren (NS) of 
a Mach 14 turbulent 
boundary layer
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§ Hybrid WENO/Central Difference Method
• High-order non-dissipative central schemes for capturing broadband turbulence

(Pirozzoli, JCP, 2010)

• Weighted Essentially Non-Oscillatory (WENO) adaptation for capturing shock waves 
(Jiang & Shu JCP 1996, Martin et al. JCP, 2006)

• Rely on a shock sensor to distinguish shock waves from smooth turbulent regions 

- physical shock sensor based on vorticity and dilatation (Ducro, JCP, 2000)

- numerical shock sensor based on WENO smoothness measurement and limiter 
(Taylor et al, JCP 2007)

DNS Methodology
Numerical Methods
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Flow chart of the code

§ Programming 
language and model
• Fortran 2003
• Parallel MPI-only
• I/O in parallel HDF5

DNS Methodology
Software Structure   
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computational domain

copied part of computational domain

ghost cellsz
xy

2D domain decomposition 
• z pencil used
• z is the wall-normal direction

Static data decomposition and ghost 
cell update between four processors

DNS Methodology
Domain Decomposition   

x-node = 4
y-node = 3
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DNS Methodology
Computational Performance   

§ Computation scales well to 1000 XE nodes (32,000 cores)
§ Strong Scaling: mesh size fixed at 3200x320x500, increase # of cores
§ Weak Scaling: pencil size fixed at 16x16x500, increase # of cores and mesh size

Strong Scaling
(Computation Time only) 

Weak Scaling
(Computation Time only) 
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DNS Methodology
IO Workflow

q I/O requirements
• Restart I/O

- five floating-point quantities per grid point consisting of all the 
primitive flow variables 
(~ 1.0 TB per dump, ~ 50 dumps per production run)

• Analysis I/O
- ASCII dumps of running-averaged statistics and boundary-layer 

integral quantities (< 1.0 GB per dump)
- data-intensive HDF5 time series: 2D plane cuts and 3D subsets 

of the calculated flow volume for statistical/spectral analyses and 
visualization (~ 200 GB per dump, ~ 200 dumps per production 
run)

• Data archival
- All the ASCII dumps and HDF5 timeseries files for post-

processing (~ 40 TB)
- up to 10 restart files (~ 10 TB)
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DNS Methodology
IO Workflow

q I/O Methodology
• “One-file” mode: All processes collectively write into the same restart 

or timeseries file (Nfile = 1) using parallel HDF5 (< 100 GB per dump)
• “Multiple-file” mode: restart and timeseries dump written into a small 

number of file using parallel HDF5 (> 100 GB per dump)
- Nfile << NMPI-ranks
- Nfile = Nx-node or Nfile = Ny-node

Nfile = 1

Nfile = Nx-node

Nfile = Ny-node

x-node = 3

y-node = 3
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DNS Methodology
IO performance  

Nfile = 1: 
28.9 minutes per dump

Nfile = Ny-node= 80:
0.1 minutes per dump

Weak Scaling For a run with NMPI-rank 
= 32,000  and per-
dump file size of 160 
GB
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DNS Methodology
Overall performance  

§ Weak Scaling with 
pencil size fixed at 
16x16x500

§ Blue Waters XE Nodes 
with 32 cores/node  
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DNS Methodology
Software Profiling   

XE Nodes: 1000 nodes, 32000 cores  
Pencil size: 16x16x500
Computing time: 85%
IO time: 10%, (Nfile = Ny-node = 80)

Time breakdown
(6400x1280x500, 160GB per dump)
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Results of Domain Science
Multivariate statistics and structure of global pressure field 

induced by high-speed turbulent BLs
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DNS of Tunnel Freestream Acoustic Disturbances
Acoustic Disturbances in the Full-Scale Nozzle of a Hypersonic Wind Tunnel

q Nozzle geometry and flow conditions 
match those of the Mach 6 
Hypersonic Ludwieg Tube 
Braunschweig (HLB)

• p0 = 722 kPa, T0 = 469 K, Tw = 293 K
q “Embedded” DNS method 

§ DNS inflow provided by a full-domain 
RANS  (-1.0 m < x < 4.2)

§ DNS domain enclosed in RANS 
domains

• run1: 2.0 m – 3.9 m
• run2: 3.5 m – 4.15 m

Box-1 points: 3.05×109

Box-2 points: 4.26×109



DNS of Tunnel Freestream Acoustic Disturbances
Acoustic Disturbances in the Full-Scale Nozzle of a Hypersonic Wind Tunnel
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3.0 m < x < 3.8 m

q The wave fronts exhibit a preferred 
orientation with respect to nozzle 
centerline with in the x-r plane

q The density gradients reveal the 
omnidirectional origin of the acoustic field 
within a given cross-section of the nozzle

(a) (b)

Grayscale: numerical schlieren
Colors: vorticity magnitude 
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DNS of Tunnel Freestream Acoustic Disturbances
RMS Pressure Fluctuation

• Noise reverberation seems to significantly influence p’rms within the 
axisymmetric nozzle, leading to a faster decay to its freestream level and 
increased freestream intensity for the nozzle case

turbulent BL

Acoustic 
radiation

Single, flat wall configuration
(noise generation)

Enclosed “nozzle” 
configuration

(noise generation + noise 
reverberation)

zn : wall normal distance
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Wall Outside BL (“free stream”)

q Reasonable agreement in PSD between the flat-plate and nozzle 
cases, especially in high frequencies

x = 3.7 m
zw/δ = 2.33
zw = R-r

x = 3.7 m

DNS of Tunnel Freestream Acoustic Disturbances
Freestream Acoustic Spectrum
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DNS of Tunnel Freestream Acoustic Disturbances
Freestream Pressure Structures

Cpp (Δx, r, rref ) =
p '(x, rref , t)p '(x +Δx, r, t)

p '2 (x, rref , t)( )
1/2

p '2 (x +Δx, r, t)( )
1/2

Time-averaged pressure 
correlation in the free stream

Instantaneous pressure structure in 
the free stream 

• Simultaneous presence of waves propagating in both upward and 
downward directions within the streamwise-radial plane 

x = 3.7 m



Summary
§ Cutting-edge computational power of the Blue Waters is used to generate a DNS 

database of high-speed turbulent boundary layers
• Single, flat-wall configuration
• Axisymmetric nozzle configuration

§ DNS database is used to study the boundary-layer-induced global pressure field 

• pressure statistics and structures 

• freestream acoustic radiation

§ DNS code is being modernized on the Blue Waters to enable petascale
simulations at higher Reynolds numbers

• Software profiling

• Parallel I/O

• Hybrid MPI-OpenMP

24
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Backup
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x = 3.7 m

Grayscale: numerical schlieren
Colors: vorticity magnitude 

DNS of Tunnel Freestream Acoustic Disturbances
Acoustic Disturbances in the Full-Scale Nozzle of a Hypersonic Wind Tunnel
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Results from JaeHyuk



34HDF5 parts are labeled as ETC. USER/(WENOX+WENOY+WENOZ+Others)

DNS Performance
Wall Time

The testing case is 3200x640x500. The results are based on 100 time steps.
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4000 MPIs (integer core) 4000 MPIs (FPU)

DNS Performance
roofline analysis

The testing case is 3200x640x500. The results are based on 100 time steps.
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8000 MPIs (integer core) 8000 MPIs (FPU)

DNS Performance
roofline analysis

The testing case is 3200x640x500. The results are based on 100 time steps.
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16000 MPIs (integer core) 16000 MPIs (FPU)

DNS Performance
roofline analysis

The testing case is 3200x640x500. The results are based on 100 time steps.
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32000 MPIs (FPU)32000 MPIs (integer core)

DNS Performance
roofline analysis

The testing case is 3200x640x500. The results are based on 100 time steps.



USER/(WENOX+WENOY+WENOZ+Others)
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DNS Performance
per-node performance

The testing case is 3200x640x500. The results are based on 100 time steps.
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WENOX WENOZ

WENOY Others

DNS Performance
per-node performance


