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Why use Python in HPC?

● everybody else is already using it
– including your students, whether you like it or not...
– large body of documentation available on the web

● Python's design principles:
– Beautiful is better than ugly.
– Explicit is better than implicit.
– Simple is better than complex.
– Readability counts.

make for code well suited to scientific projects
● Python was originally designed to be usable as a glue language

– highly extensible
– can bind to many compiled languages: C, C++, Fortran
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Pros and cons of using Python in your science project

● Very low learning curve
– for you
– for your students

● Quick turnaround while developing
● fully open source

– no licensing costs
– encourages sharing code

● large number of scientific packages:
– numpy, scipy
– PyTrilinos, petsc4py, 
Elemental, SLEPc

– mpi4py, h5py, netcdf

● Very low learning curve
– low quality code possible

● not initially designed for HPC
– most developers aren't scientists
– Python itself is not very fast

● Large startup costs, hard on cluster 
IO subsystem 

● not always backwards compatible, 
even between minor versions

● duck-typing makes code validation 
hard, errors only detected at runtime
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Usage cases of Python for HPC by task 

● preparing your input deck
– create input files based on physical 

parameters
– create directory structures
– submit simulations
– mostly string handling and scripting

● process simulation results
– combine data from checkpoints
– interactively explore data
– distill scientific results from data
– produce plots and other 

representation of results
– mostly serial but possible bag-of-

task parallelism

● orchestrate simulations
– set up data for multi-stage 

simulations
– check success of each step
– start MPI parallel simulation code

● glue code in simulation binary
– Python handles simulation 

infrastructure tasks
– most lines of code are Python
– most execution time is in compiled 

code
● Python for science code

– no custom compiled code
– Python code or public packages do 

actual science calculations
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Python startup time issues

● Python startup and the import 
statement are very metadata 
intensive

● has 1600 open & stat calls
– per MPI rank, hitting a single 

metadata server
● e.g. a 1ms response time, 1024 

ranks → 1,600s startup time
– makes shared file system slow 

for every user on the system

● solved in BWPY for provided modules
● for you own modules

– install to /dev/shm/$USER on login node
– tar up /dev/shm/$USER
– extract tarball to /dev/shm/$USER on 

compute nodes, put first in $PYTHONPATH

python3 -c 'import numpy'

60 modules – Lustre, 1 rank per node

60 modules – bwpy, 1 rank 
per node

10x faster
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Workflows in python

● for simple bag-of-tasks workflows, use 
mpi4py's MPICommExecutor (see 
BWPY presentation)
– do not use 1000 aprun -n1 python

● Python workflows in 
Blue Waters webinars series:
– Parsl, modern, pure python, standalone
– Pegasus, very mature, builds on 

HTCondor
● IO challenge

– no file system likes millions of tiny files. 
Lustre is no exception

– store temporary files in /dev/shm on 
compute nodes

– pre-stage files in the background using 
Globus, has a python interface

Parsl

from parsl import App, DataFlowKernel
import parsl.configs.local as lc
dfk = DataFlowKernel(lc.localThreads)

@App('python', dfk)
def sqr(x): return x*x
data = range(21)

squared = map(sqr, data)
print([i.result() for i in squared])

MPICommExecutor

from mpi4py import MPI
from mpi4py.futures import MPICommExecutor

def sqr(x): return x*x
data = range(21)
with MPICommExecutor(root=0) as executor:
  if executor is not None: # on root
    squared = executor.map(sqr, data)
    print(squared)

https://bluewaters.ncsa.illinois.edu/webinars/workflows
https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/content/Kyle%20Chard.%20Blue%20Waters%20webinar.%20Parsl.pdf
http://bit.ly/bw-webinars-slides-pegasus
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Numerical computations using python

● numpy the de-facto standard way to 
handle numerical arrays in python
– N-dimensional arrays of integer, 

real and complex numbers
– linear algebra (BLAS, LAPACK), 

FFT, random numbers
– linkages to C/C++/Fortran

● scipy provides higher level 
functions
– optimization
– integration
– interpolation
– signal and image processing
– ODE solvers

● both numpy and scipy leverage 
BLAS, LAPACK, FFT, FITPACK
– sub-optimal performance if 

those are incorrectly build
– BWPY does “the right thing”
– pip does not (usually)

● PyTrilinos, petsc4py, 
Elemental, SLEPc build on these

import numpy as np
A = np.random.random((1000,1000))
b = np.random.random((1000,))
c = A*b

pip:  0.02s
BWPY: 0.004s 5x faster
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Computing in python code

● How CPython works
– compile script to bytecode
– execute one line of byte code after 

the other
● CPython is designed for 

maintainability, not speed
– no look ahead
– no parallelism (threads, vectorization)
– hard to change this due to duck 

typing
● Alternatives

– pypy
– numba
– Cython

● Not all are equally well suited for 
all tasks
– pypy does not deal well with 
numpy

is 2x slower in pypy than 
CPython (uses numpy-pypy)

is 10x faster in pypy than 
CPython

import numpy as np
a = np.zeros(10000)
for i in range(10000):
  a[i] = np.sqrt(i)

a = list()
for i in range(1000):
  a.append(str(i))
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Numba and Cython

● Numba is a just-in-time compiler 
for numerical operations in 
Cpython
– needs (simple) annotations
– deals well with numpy

12x faster than plain CPython

● Cython compiles python-like 
code to C, designed to link C 
extensions to python
– load result as module
– do threading and parallelization 

in C code

481x faster than plan CPython

import numpy as np
from numba import jit

@jit
def my_sqrt():
  a = np.zeros(10000)
  for i in range(10000):
    a[i] = np.sqrt(i)

from libc.math cimport sqrt

def my_sqrt():
  cdef int i
  cdef double a[10000]
  for i in range(10000):
    a[i] = sqrt(i)
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Calling compiled code (the easy way)

● numpy has convenience code to link to Fortran code
– very easy to use (much easier than C)

SUBROUTINE FIB(A,N)
INTEGER N
REAL*8 A(N)
DO I=1,N
   IF (I.EQ.1) THEN
      A(I) = 0.0D0
   ELSEIF (I.EQ.2) THEN
      A(I) = 1.0D0
   ELSE
      A(I) = A(I-1) + A(I-2)
   ENDIF
ENDDO
END SUBROUTINE

$ python -m numpy.f2py -m myfib \
  -c fib.f90 

import numpy
import myfib

a = numpy.zeros(8, 'float64')
myfib.fib(a)
print(a)

For C code, you may even want to 
write a Fortran wrapper

from http://scipy-lectures.org

http://scipy-lectures.org/
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More on using compiled modules

● Cython: 
https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with
_c.html#id13

● f2py (very easy!): 
https://docs.scipy.org/doc/numpy/user/c-info.python-as-glue.html#f2py

● SWIG:  http://swig.org/Doc1.3/Python.html
● Boost – interferes with HDF5 on BW
● Ctypes: 

https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with
_c.html#id6

● Numpy bindings in C/C++: https://dfm.io/posts/python-c-extensions/

https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html#id13
https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html#id13
https://docs.scipy.org/doc/numpy/user/c-info.python-as-glue.html#f2py
http://swig.org/Doc1.3/Python.html
https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html#id6
https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html#id6
https://dfm.io/posts/python-c-extensions/
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Code profiling

● Profile you code to find out where it 
spends most time. Assuming that it 
must be your innermost loop is 
dangerous...

● object code profilers like CrayPat 
profile the python interpreter, but not 
your python code

● Python comes with a built in profiler 
in the cProfile module

● included in BWPY
– default is function level granularity
– add extra profiling modules and 

analysis tools in a virtualenv
● can be as simple as
python -m cProfile loop.py

● output profile using -o switch for 
in depth analysis
– pstats module lets you read it

● install line_profiler for line-
by-line usage
– annotate functions to profile 

using @profile
– run kernprof -l script.py

python -o prof.dat -m cProfile \
  loop.py

import pstats
p = pstats.Stats('prof.dat')
p.sort_stats('cumulative').\
  print_stats(5)
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Code profiling example

$ virtualenv --system-site-packages $PWD
$ pip install line_profiler
$ kernprof -l loop.py
$ python -m line_profiler loop.py.lprof
Line #      Hits         Time  Per Hit   % Time  Line Contents
     1                                           @profile
     2                                           def loop():
     3         1          5.0      5.0      0.0    a = []
     4   1000001     957889.0      1.0     44.3    for i in range(1000000):
     5   1000000    1206173.0      1.2     55.7      a.append(i)

$ python -m cProfile loop.py
 ncalls  tottime  percall  cumtime  percall filename:lineno(function)
      1    0.019    0.019    0.477    0.477 test-profile.py:1(<module>)
      1    0.334    0.334    0.457    0.457 test-profile.py:1(loop)
      1    0.000    0.000    0.477    0.477 {built-in method builtins.exec}
1000000    0.124    0.000    0.124    0.000 {method 'append' of 'list' objects}
      1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profil...

@profile
def loop():
  a = []
  for i in range(1000000):
    a.append(i)



Questions?

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National 
Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the 
University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.
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Refeferences and extra material

● This presentation is heavily based on William Scullin's presentations: 
https://www.alcf.anl.gov/files/Scullin-Pavlyk _SDL2018_Python.pdf

● https://github.com/bccp/nbodykit, https://wiki.fysik.dtu.dk/gpaw/
● https://bluewaters.ncsa.illinois.edu/webinars/workflows
● https://cython.org/, https://www.pypy.org/, https://numba.pydata.org/
● https://bluewaters.ncsa.illinois.edu/python, 

https://bluewaters.ncsa.illinois.edu/Python-profiling

https://www.alcf.anl.gov/files/Scullin-Pavlyk%20_SDL2018_Python.pdf
https://github.com/bccp/nbodykit
https://wiki.fysik.dtu.dk/gpaw/
https://bluewaters.ncsa.illinois.edu/webinars/workflows
https://cython.org/
https://www.pypy.org/
https://numba.pydata.org/
https://bluewaters.ncsa.illinois.edu/python
https://bluewaters.ncsa.illinois.edu/Python-profiling
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Python usage by science problem 

● data science, machine learning
– Python is the dominant 

language
– Lots of support, often not much 

scalability beyond single nodes
● image and data analysis

– often HTC-like workflow
– Python workflow managers 

avoid having to learn a new 
language

– extensive image and data 
processing libraries for python

● “true” HPC workloads
– Python as glue code, e.g. 

nbodytoolkit, GPAW
– most code in python, C / Fortran 

code does heavy lifting

S
hare o f execu tion tim
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Cython and numpy

● Cython lets you call C code passing numpy arrays
void cos_doubles(double * in_array, double * out_array, int size){
    int i;
    for(i=0;i<size;i++){
        out_array[i] = cos(in_array[i]);
    }
}

cdef extern from "cos_doubles.h":
    void cos_doubles (double * in, double * out, int size)

# create the wrapper code, with numpy type annotations
def cos_doubles_func(np.ndarray[double, ndim=1, mode="c"],
                     np.ndarray[double, ndim=1, mode="c"]):
    cos_doubles(<double*> np.PyArray_DATA(in_array),
                <double*> np.PyArray_DATA(out_array),
                in_array.shape[0])

http://scipy-lectures.org


