

Roland Haas (NCSA) Email: rhaas@illinois.edu

NCSA | National Center for Supercomputing Applications

Why use Python in HPC?

- everybody else is already using it
 - including your students, whether you like it or not...
 - large body of documentation available on the web
- Python's design principles:
 - Beautiful is better than ugly.
 - Explicit is better than implicit.
 - Simple is better than complex.
 - Readability counts.
 - make for code well suited to scientific projects
- Python was originally designed to be usable as a glue language
 - highly extensible
 - can bind to many compiled languages: C, C++, Fortran

Pros and cons of using Python in your science project

Very low learning curve

- for you
- for your students
- Quick turnaround while developing
- fully open source
 - no licensing costs
 - encourages sharing code
- large number of scientific packages:
 - numpy, scipy
 - PyTrilinos, petsc4py, Elemental, SLEPc
 - mpi4py, h5py, netcdf

Very low learning curve

- low quality code possible
- not initially designed for HPC
 - most developers aren't scientists
 - Python itself is not very fast
- Large startup costs, hard on cluster IO subsystem
- not always backwards compatible, even between minor versions
- duck-typing makes code validation hard, errors only detected at runtime

Usage cases of Python for HPC by task

- preparing your input deck
 - create input files based on physical parameters
 - create directory structures
 - submit simulations
 - mostly string handling and scripting
- process simulation results
 - combine data from checkpoints
 - interactively explore data
 - distill scientific results from data
 - produce plots and other representation of results
 - mostly serial but possible bag-oftask parallelism

- orchestrate simulations
 - set up data for multi-stage simulations
 - check success of each step
 - start MPI parallel simulation code
- glue code in simulation binary
 - Python handles simulation infrastructure tasks
 - most lines of code are Python
 - most execution time is in compiled code
- Python for science code
 - no custom compiled code
 - Python code or public packages do actual science calculations

Python startup time issues

 Python startup and the import statement are very metadata intensive

python3 -c 'import numpy'

- has 1600 open & stat calls
 - per MPI rank, hitting a single metadata server
- e.g. a 1ms response time, 1024 ranks → 1,600s startup time
 - makes shared file system slow for every user on the system

- solved in BWPY for provided modules
- for you own modules
 - install to /dev/shm/\$USER on login node
 - tar up /dev/shm/\$USER
 - extract tarball to /dev/shm/\$USER on compute nodes, put first in \$PYTHONPATH

Workflows in python

- for simple bag-of-tasks workflows, use mpi4py's MPICommExecutor (see BWPY presentation)
 - do not use 1000 aprun -n1 python
- Python workflows in Blue Waters webinars series:
 - Parsl, modern, pure python, standalone
 - Pegasus, very mature, builds on HTCondor
- IO challenge
 - no file system likes millions of tiny files.
 Lustre is no exception
 - store temporary files in /dev/shm on compute nodes
 - pre-stage files in the background using Globus, has a python interface

MPICommExecutor

```
from mpi4py import MPI
from mpi4py.futures import MPICommExecutor

def sqr(x): return x*x
data = range(21)
with MPICommExecutor(root=0) as executor:
   if executor is not None: # on root
      squared = executor.map(sqr, data)
      print(squared)
```

Parsl

```
from parsl import App, DataFlowKernel
import parsl.configs.local as lc
dfk = DataFlowKernel(lc.localThreads)

@App('python', dfk)
def sqr(x): return x*x
data = range(21)

squared = map(sqr, data)
print([i.result() for i in squared])
```


Numerical computations using python

- NumPy
- numpy the de-facto standard way to handle numerical arrays in python
 - N-dimensional arrays of integer, real and complex numbers
 - linear algebra (BLAS, LAPACK),
 FFT, random numbers
 - linkages to C/C++/Fortran
- scipy provides higher level functions

- optimization
- integration
- interpolation
- signal and image processing
- ODE solvers

- both numpy and scipy leverage BLAS, LAPACK, FFT, FITPACK
 - sub-optimal performance if those are incorrectly build
 - BWPY does "the right thing"
 - pip does not (usually)
- PyTrilinos, petsc4py, Elemental, SLEPc build on these

```
import numpy as np
A = np.random.random((1000,1000))
b = np.random.random((1000,))
c = A*b

pip: 0.02s
BWPY: 0.004s

5x faster
```

Computing in python code

- How CPython works
 - compile script to bytecode
 - execute one line of byte code after the other
- CPython is designed for maintainability, not speed
 - no look ahead
 - no parallelism (threads, vectorization)
 - hard to change this due to duck typing
- Alternatives
 - pypy
 - numba
 - Cython

- Not all are equally well suited for all tasks
 - pypy does not deal well with numpy

```
import numpy as np
a = np.zeros(10000)
for i in range(10000):
   a[i] = np.sqrt(i)
```

is 2x slower in pypy than CPython (uses numpy-pypy)

```
a = list()
for i in range(1000):
   a.append(str(i))
```

is 10x faster in pypy than CPython

Numba and Cython

- Numba is a just-in-time compiler for numerical operations in Cpython
 - needs (simple) annotations
 - deals well with numpy

```
import numpy as np
from numba import jit

@jit
def my_sqrt():
    a = np.zeros(10000)
    for i in range(10000):
        a[i] = np.sqrt(i)
```

12x faster than plain CPython

- Cython compiles python-like code to C, designed to link C extensions to python
 - load result as module
 - do threading and parallelization in C code

```
from libc.math cimport sqrt

def my_sqrt():
    cdef int i
    cdef double a[10000]
    for i in range(10000):
        a[i] = sqrt(i)
```

481x faster than plan CPython

Calling compiled code (the easy way)

- numpy has convenience code to link to Fortran code
 - very easy to use (much easier than C)

```
SUBROUTINE FIB (A, N)
INTEGER N
REAL*8 A(N)
DO I=1, N
   IF (I.EQ.1) THEN
      A(I) = 0.000
   ELSEIF (I.EQ.2) THEN
      A(I) = 1.0D0
   ELSE
      A(I) = A(I-1) + A(I-2)
   ENDIF
ENDDO
END SUBROUTINE
```

```
$ python -m numpy.f2py -m myfib \
-c fib.f90
```

```
import numpy
import myfib

a = numpy.zeros(8, 'float64')
myfib.fib(a)
print(a)
```

For C code, you may even want to write a Fortran wrapper

from http://scipy-lectures.org

More on using compiled modules

- Cython: https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html#id13
- f2py (very easy!): https://docs.scipy.org/doc/numpy/user/c-info.python-as-glue.html#f2py
- SWIG: http://swig.org/Doc1.3/Python.html
- Boost interferes with HDF5 on BW
- Ctypes: https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html#id6
- Numpy bindings in C/C++: https://dfm.io/posts/python-c-extensions/

Code profiling

- Profile you code to find out where it spends most time. Assuming that it must be your innermost loop is dangerous...
- object code profilers like CrayPat profile the python interpreter, but not your python code
- Python comes with a built in profiler in the cProfile module
- included in BWPY
 - default is function level granularity
 - add extra profiling modules and analysis tools in a virtualenv
- can be as simple as python -m cProfile loop.py

- output profile using -o switch for in depth analysis
 - pstats module lets you read it

```
python -o prof.dat -m cProfile \
  loop.py

import pstats
p = pstats.Stats('prof.dat')
p.sort_stats('cumulative').\
  print_stats(5)
```

- install line_profiler for lineby-line usage
 - annotate functions to profile
 using @profile
 - run kernprof -l script.py

Code profiling example

```
$ python -m cProfile loop.py
ncalls tottime percall
                         cumtime
                                  percall filename:lineno(function)
          0.019
                   0.019
                           0.477
                                    0.477 test-profile.py:1(<module>)
                                    0.457 test-profile.py:1(loop)
          0.334 0.334
                           0.457
                                    0.477 {built-in method builtins.exec}
          0.000 0.000
                           0.477
                                    0.000 {method 'append' of 'list' objects}
1000000
          0.124 0.000
                           0.124
          0.000
                  0.000
                           0.000
                                    0.000 {method 'disable' of 'lsprof.Profil...
```

```
@profile
                                                         def loop():
$ virtualenv --system-site-packages $PWD
                                                           a = []
 pip install line profiler
                                                           for i in range (1000000):
 kernprof -1 loop.py
                                                             a.append(i)
$ python -m line profiler loop.py.lprof
Line #
       Hits
                 Time Per Hit
                                               Line Contents
                                       % Time
                                                @profile
                                                def loop():
                         5.0
                                  5.0
                                          0.0
                                                 a = []
                    957889.0
    4
        1000001
                                  1.0
                                         44.3 for i in range(1000000):
        1000000
                   1206173.0
                                          55.7
                                                   a.append(i)
                                  1.2
```


This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.

NCSA | National Center for Supercomputing Applications

References and extra material

- This presentation is heavily based on William Scullin's presentations: https://www.alcf.anl.gov/files/Scullin-Pavlyk _SDL2018_Python.pdf
- https://github.com/bccp/nbodykit, https://wiki.fysik.dtu.dk/gpaw/
- https://bluewaters.ncsa.illinois.edu/webinars/workflows
- https://cython.org/, https://www.pypy.org/, https://numba.pydata.org/
- https://bluewaters.ncsa.illinois.edu/python, https://bluewaters.ncsa.illinois.edu/Python-profiling

Python usage by science problem

- data science, machine learning
 - Python is the dominant language
 - Lots of support, often not much scalability beyond single nodes
- image and data analysis
 - often HTC-like workflow
 - Python workflow managers avoid having to learn a new language
 - extensive image and data processing libraries for python

- "true" HPC workloads
 - Python as glue code, e.g. nbodytoolkit, GPAW
 - most code in python, C / Fortran code does heavy lifting

image (C) William Scullin

Cython and numpy

Cython lets you call C code passing numpy arrays

```
void cos_doubles(double * in_array, double * out_array, int size){
   int i;
   for(i=0;i<size;i++){
      out_array[i] = cos(in_array[i]);
   }
}</pre>
```