Roland Haas (NCSA)
Email: rhaas@illinois.edu

Why use Python in HPC?

* everybody else is already using it

- Including your students, whether you like it or not...

- large body of documentation available on the web
* Python's design principles:

- Beautiful is better than ugly.

- Explicit is better than implicit.

- Simple is better than complex.

- Readabillity counts.

make for code well suited to scientific projects

* Python was originally designed to be usable as a glue language
- highly extensible
— can bind to many compiled languages: C, C++, Fortran

X ILLINOIS

Pros and cons of using Python in your science project

* Very low learning curve v * Very low learning curve @
- for you - low quality code possible
— for your students * not initially designed for HPC
* Quick turnaround while developing - most developers aren't scientists
 fully open source - Python itself is not very fast
- no licensing costs * Large startup costs, hard on cluster

— encourages sharing code O subsystem

* not always backwards compatible,

 |arge number of scientific packages: . .
9 P 9 even between minor versions

- HIRYy SEAbY * duck-typing makes code validation

- PyTrilinos, petscdpy, hard, errors only detected at runtime
Elemental, SLEPc

- mpidpy, hbdpy, netcdf

3 X ILLINOIS

Usage cases of Python for HPC by task

* preparing your input deck * orchestrate simulations
- create input files based on physical - set up data for multi-stage
parameters simulations
- create directory structures ~ check success of each step
— submit simulations - start MPI parallel simulation code
- mostly string handling and scripting * glue code in simulation binary
 process simulation results - Python handles simulation

_ _ infrastructure tasks
— combine data from checkpoints ~ most lines of code are Python

- Interactively explore data - most execution time is in compiled
— distill scientific results from data code

— produce plots and other * Python for science code
representation of results - no custom compiled code

- mostly serial but possible bag-of- - Python code or public packages do
task parallelism actual science calculations

4 X ILLINOIS

Python startup time issues “ 60 modules — Lustre, 1 rank per node
+ Python startup and the import = [J_L sl Bn BNl @/E/%
statement are very metadata w HJ T % LH f

Intensive

_ T < ! 50
python3 C 1mport numpy . 60 modules — bwpy, 1 rank
_» per node / s
* has 1600 open & stat calls

- per MPI rank’ hitting a Single I-nade Z-node 4-node gnode l6-node 32-node G4node 128node 256-node S12-node 1024-node
metadata Server Number of Nodes

_ * solved in BWPY for provided modules
* e.g.a Imsresponse time, 1024 . ¢ you own modules
ranks — 1,600s startup time

- Install to /dev/shm/S$SUSER on login node
- makes shared file system slow

— tarup /dev/shm/SUSER
for every user on the system - extract tarball to /dev/shm/SUSER on

compute nodes, put first in SPYTHONPATH

5 X ILLINOIS

Workflows in python

» for simple bag-of-tasks workflows, use MPICommExecutor

mpidpy's MPICommExecutor (See grom mpiipy ';mltmrt MPI e e
BWPY presentat|on) rom mpli4py.rutures 1impor ommemXeCutor
def sqgr(x): return x*x

- do notuse 1000 aprun -nl python gata = range(21)

with MPICommExecutor (root=0) as executor:

* PythOn WOrkﬂOWS. in . if executor is not None: # on root
Blue Waters webinars series: squared = executor.map(sqr, data)

~ Parsl, modern, pure python, standalone print (squared)
- Pegasus, very mature, builds on

Parsl
HTCondor
from parsl import App, DataFlowKernel
|10 challenge import parsl.configs.local as l1lc
: . oy : : dfk = DataFlowKernel (lc.localThreads)
- no file system likes millions of tiny files.
Lustre is no exception @App ('python', dfk)
_ _ def sqgr(x): return x*x
— store temporary files in /dev/shm on data = range (21)
Compute nodes squared = map (sqgr, data)

- pre-stage files in the background using print([i.result() for 1 in squared])
Globus, has a python interface

6 X ILLINOIS

https://bluewaters.ncsa.illinois.edu/webinars/workflows
https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/content/Kyle%20Chard.%20Blue%20Waters%20webinar.%20Parsl.pdf
http://bit.ly/bw-webinars-slides-pegasus

Numerical computations using python

* numpy the de-facto standard way to ¢ both numpy and scipy leverage

handle numerical arrays in python BLAS, LAPACK, FFT, FITPACK

- N-dimensional arrays of integer, - sub-optimal performance if
real and complex numbers those are incorrectly build

- linear algebra (BLAS, LAPACK), - BWPY does “the right thing”

FFT, random numbers

- linkages to C/C++/Fortran ~ pip does not (usually)

* PyTrilinos, petscidpy,
Elemental, SLEPc build on these

* scipy provides higher level

functions
~ . . import numpy as np
.opt|m|z§t|on np.random.random((1000, 1000))
- Integration np.random.random((1000,))
- interpolation ATD
- signal and image processing pip: 0.02s

ODE solvers BWPY: 0.004s

& ILLINOIS

Computing in python code

« How CPython works * Not all are equally well suited for
- compile script to bytecode all tasks
- execute one line of byte code after - pypy does not deal well with
the other numpy
* CPython is designed for import numpy as np
maintainability, not speed a = np.zeros (10000)

for 1 1n range(10000) :
ali] = np.sqgrt(1i)

IS 2X slower in pypy than
CPython (uses numpy-pypy)

- no look ahead
- no parallelism (threads, vectorization)

- hard to change this due to duck

typing
. . a = list ()
Alternatives for 1 in range(1000) :
~ pypy a.append(str(i))
- numba is 10x faster in pypy than
- Cython CPython

8 X ILLINOIS

Numba and Cython

* Numba is a just-in-time compiler * Cython compiles python-like

for numerical operations in code to C, designed to link C
Cpython extensions to python

— needs (simple) annotations - load result as module

- deals well with numpy - do threading and parallelization

import numpy as np in C code
from numba import jJit from libc.math cimport sgrt

@jit def my sqgrt():

cdef int 1

cdef double a[10000]

for 1 1n range (10000) :
ali] = sqgrt(1i)

def my sqgrt():
a = np.zeros(10000)
for 1 1n range (10000) :
ali] = np.sqgrt(1i)

12x faster than plain CPython 481x faster than plan CPython

9 X ILLINOIS

Calling compiled code (the easy way)

* numpy has convenience code to link to Fortran code
- very easy to use (much easier than C)

SUBROUTINE FIB(A,N) $ python -m numpy.f2py -m myfib \
INTEGER N -c f1b.£90

REAL*8 A (N)
DO I=1,N import numpy
IF (I.EQ.1) THEN import myfib
A(I) = 0.0DO
ELSETF (I.EQ.2) THEN a = numpy.zeros (8, 'floato4d')
A(I) = 1.0DO myfib.fib (a)
ELSE print (a)
A(I) = A(I-1) + A(I-2)
ENDIF
ENDDO

For C code, you may even want to
END SUBROUTINE write a Fortran wrapper

from http://scipy-lectures.org

10 X ILLINOIS

http://scipy-lectures.org/

More on using compiled modules

* Cython:

https://sqip%/-lectures.org/advanced/interfacing_with_c/interfacing_with
_c.html#id13

* f2py (very easy!):
https://docs.scipy.org/doc/numpy/user/c-info.python-as-glue.html#2py

SWIG: http://swig.org/Doc1.3/Python.html
* Boost — interferes with HDF5 on BW

* Ctypes:

https://sqipa/-lectures.org/advanced/interfacing_with_c/interfacing_with
_c.html#id

* Numpy bindings in C/C++: https://dfm.io/posts/python-c-extensions/

11 X ILLINOIS

https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html#id13
https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html#id13
https://docs.scipy.org/doc/numpy/user/c-info.python-as-glue.html#f2py
http://swig.org/Doc1.3/Python.html
https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html#id6
https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html#id6
https://dfm.io/posts/python-c-extensions/

Code profiling

12

Profile you code to find out where it « output profile using -o switch for

spends most time. Assuming that it in depth analysis

must be your innermost loop is _
dangerous... — pstats module lets you read it
object code profilers like CrayPat python -o prof.dat -m cProfile \

profile the python interpreter, but not Loop.py
your python code

. o . import pstats
Python comes with a built in profiler b = pstats.Stats ('prof.dat')

in the cProfile module p.sort stats('cumulative') .\
included in BWPY print_stats (o)
- default is function level granularity * install line profiler for line-
— add extra profiling modules and by-line usage

analysis tools in a virtualenv — annotate functions to profile
can be as simple as using Gprofile

python -m cProfile loop.py — run kernprof -1 script.py
X ILLINOIS

Code profiling example

$ python -m cProfile loop.py
ncalls tottime percall cumtime percall filename:lineno (function)
0.019 0.019 0.477 0.477 test-profile.py:1 (<module>)
.334 .334 .457 .457 test-profile.py:1(loop)
.000 .000 L4777 477 {built-in method builtins.exec}
.124 .000 .124 .000 {method 'append' of 'list' objects}
1 .000 .000 .000 .000 {method 'disable' of ' lsprof.Profil...

@profile
def loop () :
a = []
for 1 in range (1000000) :
a.append (1)

virtualenv --system-site-packages S$PWD
pip install line profiler
kernprof -1 loop.py
python -m line profiler loop.py.lprof
' Time Per Hit % Time Line Contents
@profile
def loop () :
1 5.0 . . a = []
1000001 957889.0 . . for 1 in range (1000000) :
1000000 1206173.0 . . a.append (1)

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National
Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of lllinois. Blue Waters is a joint effort of the
University of lllinois at Urbana-Champaign and its National Center for Supercomputing Applications.

Refeferences and extra material

* This presentation is heavily based on William Scullin's presentations:

nttps://www.alcf.anl.gov/files/Scullin-Pavlyk _SD
* https://github.com/bccp/nbodykit, https://wiki.fysi

2018 _Python.pdf
K.dtu.dk/gpaw/

* https://bluewaters.ncsa.illinois.edu/webinars/wor

kKflows

* https://cython.org/, https://www.pypy.org/, https://numba.pydata.org/

* https://bluewaters.ncsa.illinois.edu/python,

15

nttps://bluewaters.ncsa.illinois.edu/Python-profiling

X ILLINOIS

https://www.alcf.anl.gov/files/Scullin-Pavlyk%20_SDL2018_Python.pdf
https://github.com/bccp/nbodykit
https://wiki.fysik.dtu.dk/gpaw/
https://bluewaters.ncsa.illinois.edu/webinars/workflows
https://cython.org/
https://www.pypy.org/
https://numba.pydata.org/
https://bluewaters.ncsa.illinois.edu/python
https://bluewaters.ncsa.illinois.edu/Python-profiling

Python usage by science problem

* data science, machine learning * “true” HPC workloads

- Python is the dominant - Python as glue code, e.g.
language nbodytoolkit, GPAW

- Lots of support, often not much - most code in python, C / Fortran
scalability beyond single nodes code does heavy lifting

* image and data analysis
- often HTC-like workflow

- Python workflow managers
avoid having to learn a new
language

- extensive image and data
processing libraries for python

image (C) William Scullin

16 X ILLINOIS

Cython and numpy

* Cython lets you call C code passing numpy arrays

vold cos doubles (double * in array, double * out array, int size) {
int 1;
for (1=0; i<size;i++) {
out arrayl[i1] = cos(in arrayl[1i]);

}

cdef extern from "cos doubles.h":

volid cos doubles (double * 1n, double * out, int size)

create the wrapper code, with numpy type annotations
def cos doubles func(np.ndarray[double, ndim=1, mode="c"],
np.ndarray[double, ndim=1, mode="c"]) :
cos doubles (<double*> np.PyArray DATA (1n array),
<double*> np.PyArray DATA (out array),
in array.shape([0])

http://scipy-lectures.org

