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Overview of the project

q Today: Virtual prototypes supplement physical tests in design and certification 

q Vision: Further reduce cost & risk (Supplement → Replacement) 

q Immediate goal: Increase impact of simulation technology

q Impact of simulation = f (speed, scale, fidelity)  

q Performance scaling = f (code, input, machine)

q FEM: Partial differential equations → Sparse linear system

q HPC strategy: Sparse linear algebra → Dense linear algebra

q Overall approach: Scale-analyze-improve with real-life models 
Rolls-Royce 
Representative Engine Model
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Overview of challenges

q More specific: These apply to LS-DYNA, and any other significant MCAE ISVs

§ Large legacy code, cannot start from scratch, must gracefully evolve

§ General-purpose code, cannot optimize for narrow class of problems

§ Key algorithms are NP-complete/hard, need to depend on heuristics

q More universal: These probably apply to any significant scientific or engineering code

§ Limited number of software development tools, especially for performance engineering

§ Increasing complexity of hardware architectures, combined with frequent design updates

§ Performance portability constraints for codes used on many systems

§ Limited HPC access, especially true for ISVs
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Parallel scaling at the beginning of the Blue Waters project 
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Improvement framework and progress highlights

q Memory management improvements

§ Dynamic allocation

q Existing algorithm improvements
§ Inter-node communication

q Previously unknown bottlenecks

§ Constraint processing

q Entirely new algorithms
§ Parallel matrix reordering

§ Parallel symbolic factorization

q Computation workflow modifications
§ Offline parsing and decomposition of the model

Measure

AnalyzeImprove

Scale-up
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NCSA OVIS view of LS-DYNA execution
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Multifrontal sparse linear solver

Multifrontal method: Input processing > Matrix reordering > Symbolic factorization >

Numeric factorization > Triangular solution

Assembly tree of submatrices
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Sparse linear system
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Results – Comparison with MUMPS factorization
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LS-GPart nested dissection for eight processors  
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Results – LS-GPart matrix reordering quality  
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Results - LS-GPart performance
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Results – Before and after Blue Waters engagement
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Results – Overall practical impact

q Finite element model with 200 million degrees of freedom

q Cumulative effect of better code and more compute resources

q Two orders of magnitude reduction in time-to-solution 

q Work in progress for more practical impact
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Future work and concluding remarks

q Industrial challenges are beyond the capabilities of today’s H/W and S/W!

q New design decisions based on finer grain analyses and more benchmarks!

q More scale will also couple with more physics!

q The right collaboration model accelerates progress!  

q HPC access is critical in advancing the state of the art!

q Project benefits much broader community and sectors!

q Special thanks to Blue Waters SEAS team for technical support!
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