Improving Virtual Prototyping and Certification with Implicit Finite Element Method at Scale

Seid Koric^{1,2}, Robert F. Lucas³, Erman Guleryuz¹

¹National Center for Supercomputing Applications
²Mechanical Science and Engineering Department, University of Illinois
³Livermore Software Technology Corporation

Blue Waters Symposium 2019, June 5th

Seid Koric, Erman Guleryuz

Todd Simons, James Ong

Robert Lucas, Roger Grimes, Francois-Henry Rouet

Jef Dawson, Ting-Ting Zhu

Overview of the project

Today: Virtual prototypes supplement physical tests in design and certification

 \Box Vision: Further reduce cost & risk (Supplement \rightarrow Replacement)

Immediate goal: Increase impact of simulation technology

□ Impact of simulation = f (speed, scale, fidelity)

Performance scaling = *f* (code, input, machine)

- \Box FEM: Partial differential equations \rightarrow Sparse linear system
- \Box HPC strategy: Sparse linear algebra \rightarrow Dense linear algebra
- **Overall approach:** Scale-analyze-improve with real-life models

Rolls-Royce Representative Engine Model

Overview of challenges

□ More specific: These apply to LS-DYNA, and any other significant MCAE ISVs

- Large legacy code, cannot start from scratch, must gracefully evolve
- General-purpose code, cannot optimize for narrow class of problems
- Key algorithms are NP-complete/hard, need to depend on heuristics

□ More universal: These probably apply to any significant scientific or engineering code

- Limited number of software development tools, especially for performance engineering
- Increasing complexity of hardware architectures, combined with frequent design updates
- Performance portability constraints for codes used on many systems
- Limited HPC access, especially true for ISVs

Parallel scaling at the beginning of the Blue Waters project

100M DOF, Three implicit load steps

Improvement framework and progress highlights

Memory management improvements

- Dynamic allocation
- Existing algorithm improvements
 - Inter-node communication
- Previously unknown bottlenecks
 - Constraint processing
- **†**Entirely new algorithms
 - Parallel matrix reordering
 - Parallel symbolic factorization

Computation workflow modifications

Offline parsing and decomposition of the model

NCSA OVIS view of LS-DYNA execution

105M DOF model, 256 MPI ranks, 8 threads each Free memory on MPI rank zero's node

ILLINOIS NCSA 7

Multifrontal sparse linear solver

Multifrontal factorization parallel scaling

Multifrontal method: Input processing > Matrix reordering > Symbolic factorization >

Numeric factorization > Triangular solution

Results – Comparison with MUMPS factorization

11M Engine model N=33.3M, NZ=1214.1M Factors 216GB, ops 144 TFlops

LS-GPart nested dissection for eight processors

ILLINOIS NCSA 10

<u>Results – LS-GPart matrix reordering quality</u>

LS-GPart added to reordering comparison presented in "Preconditioning using Rankstructured Sparse Matrix Factorization", Ghysels, et.al., SIAM PP 2018

Results - LS-GPart performance

Processor count

Results – New symbolic factorization performance scaling

mf3Sym with LS-GPart

<u>Results – Before and after Blue Waters engagement</u>

100M DOF, Three implicit load steps

ILLINOIS NCSA 14

<u>Results – Overall practical impact</u>

□ Finite element model with 200 million degrees of freedom

- □ Cumulative effect of better code and more compute resources
- □ Two orders of magnitude reduction in time-to-solution
- □ Work in progress for more practical impact

Future work and concluding remarks

□ Industrial challenges are beyond the capabilities of today's H/W and S/W!

□ New design decisions based on finer grain analyses and more benchmarks!

□ More scale will also couple with more physics!

□ The right collaboration model accelerates progress!

□ HPC access is critical in advancing the state of the art!

□ Project benefits much broader community and sectors!

□ Special thanks to Blue Waters SEAS team for technical support!

ILLINOIS NCSA | National Center for Supercomputing Applications

