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We use Blue 
Waters to …

Dielectric barrier discharge, first reported by 
Siemens, 1857.

§ Develop large scale 
electronic structure 
calculations

§ Investigate nano and 
microscale dielectric barrier 
discharges

§ Technological applications in
microcombustion, chemical
processing
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Of interest:

§ A microscopic 
understanding of DBD 
devices

§ So far, qualitative 
agreement with 
experiments
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Surface charge on the 
dielectric under AC 
voltage.

[Ghale and Johnson, 
Phys. Rev. B, 2019]



Overview of methods

Tight-binding is the least expensive method that can still give us 
quantum-mechanical information about electrons at the atomistic level 
(bandgaps, transport, charge-density)

Tight-binding
∼ 100,000

DFT
∼ 1,000

Quantum Monte Carlo
∼ 100 atoms

Classical 
Potentials
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Possible 
Computations

§ Systems for which 
classical molecular 
dynamics have been 
done

§ Disordered systems

§ Systems without 
translational symmetry

§ Glasses and liquids

Carbon quasi-crystal
Ahn et. al. Science, 2018

Polycrystalline Ni
Swygenhoven, 
Science, 2002

Quenched amorphous-Si
Deringer, et al., 

J. Phys. Chem. Lett., 2018
Protein, lipid bi-layer, water

Zuse Institute Berlin
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Computation
Input Coordinates
of atoms {~R

i

}

Hamiltonian H(t) =
HSK + V

ext

(t)

Hi = H(t) +H�(P)

Compute Den-
sity matrix P

||Pi �Pi�1||  ✏

Self consis-
tent H and P

Energy = Tr[PH],
density of states,

charge n(~r)

No

Yes

§ Given matrix !, compute 
# where 

!$% = '%$%
# =(

%
$% $% )

#* = #
§ Each rank of P represents 

an electron

§ Large eigenspace 
problem



Algorithms
Sparsity

§ O(N) in terms of FLOPS

§ Rely on localization of 
solution matrix

§ Expect P to be sparse

§ Sparse matrix-matrix 
multiplication (SpMM)

Red       !"#$
Green   !"#%
Blue      !"#&
Violet 1

Density matrix (matrix size = 7500)
(Water) Bock and Challacombe SIAM J. Sci. Comput., 2013



Challenge:
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§ Memory and 
communication

§ Even for a moderate 
threshold, the % of non-
zeros grows fast.

§ Sparse matrix-matrix 
multiplications (SpMM)

(Silica) Ghale and Johnson, Comput. Phys. Comm., 2018
Increase in % of non-zeros in density matrix

With the threshold 
parameter ! = 10%&, 
the memory required 
increases by a factor 
of 4. 



Our solution

§ Memory-aware

§ Based on Sparse-matrix-
vector multiplications 
(SpMVs)

§ Construct implicit 
solution (P)

§ Sampled via random 
vectors
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Simulation of 3.6 million atoms on a single 
large memory node. ~6 hours
Ghale and Johnson, Comput. Phys. Comm., 2018



Role of Blue 
Waters:

§ Scale of hardware

§ Optimized libraries

Availability of fast, 
distributed, optimized SpMV
kernels through PETSC 

x 10,000 nodes (some testing)

Tested 10# atoms



Impact of 
Blue Waters 

§ Scaling up to 10# atoms

§ Time-dependent 
simulations

§ Essential electron 
emission data

§ Current allocation: bawi
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Future work/other impacts:

■ Technical impact within area 
– Ability to solve large systems self-consistently
– Rates of electron transfer for plasma devices

■ Outside materials science 
– fast, implicit, accurate, projection matrices 

■ Future
– Time-dependent Hamiltonian (AC voltage)
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