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surface discharge

We use Blue
Waters to ...

regions

= Develop large scale O— —
electronic structure
celieulEgom: electrode o |actric | dielectric ~ €lectrode
Investigate nano and microdischarges
microscale dielectric barrier (plasma formation)
discharges Dielectric barrier discharge, first reported by

Siemens, 1857.
= Technological applications in

microcombustion, chemical

processing
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= A microscopic 4000V
understanding of DBD | |
devices

Surface charge on the
dielectric under AC
voltage.
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[Ghale and Johnson,
Phys. Rev. B, 2019]

= So far, qualitative
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Lissajous plot under AC voltage




Overview of methods
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Quantum Monte Carlo  DFT Tight-binding :  Classical Coarse-grained  Continuum
~ 100 atoms ~1000 ~ 100,000 : Potentials Models Models

~10° ? ?

Tight-binding is the least expensive method that can still give us
gquantum-mechanical information about electrons at the atomistic level
(bandgaps, transport, charge-density)



Possible
Computations

= Systems for which
classical molecular
dynamics have been
done

= Disordered systems

= Systems without
translational symmetry

= (Glasses and liquids

Carbon quasi-crystal Polycrystalline Ni
Ahn et. al. Science, 2018 Swygenhoven,

Science, 2002

Quenched amorphous-Si
Deringer, et al., Protein, lipid bi-layer, water
J. Phys. Chem. Lett., 2018 Zuse Institute Berlin




Backgrou na
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Input Coordinates
of atoms {R;}

Computation | ,, /

Hamiltonian H(t) =
HSK + ‘/e:ct(t)

Y

H' = H(t) + HA(P)

v
Compute Den-

sity matrix P
|
Y

Y

= Given matrix H, compute
P where

Yes

Self consis-

= Each rank of P represents tent H and P

an electron ) Y .
Energy = Tr[PH],

density of states,
charge n(r)

= |arge eigenspace
problem




Algorithms

= O(N) in terms of FLOPS

= Rely on localization of
solution matrix

= Expect P to be sparse

= Sparse matrix-matrix
multiplication (SpMM)

Red 1078
Green 107°
Blue 1072
Violet 1

Sparsity

Density matrix (matrix size = 7500)
(Water) Bock and Challacombe SIAM J. Sci. Comput., 2013




Challenge:

Memory and
communication

Even for a moderate
threshold, the % of non-
zeros grows fast.

Sparse matrix-matrix
multiplications (SpMM)
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No. of SP2 iterations
Increase in % of non-zeros in density matrix

With the threshold
parameter T = 1074,
the memory required
increases by a factor
of 4.

(Silica) Ghale and Johnson, Comput. Phys. Comm., 2018
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Our solution «
2 L |
m 1.5 .
5]
E
R |
z
Memory-aware
0.5 .
Based on Sparse-matrix-
- - - 0L \ \ \ \ l
vector multiplications 0 1 9 3
(SpI\/IVs) Number of atoms 106
Construct imp”Cit Simulation of 3.6 million atoms on a single
solution (P) large memory node. ~6 hours

Ghale and Johnson, Comput. Phys. Comm., 2018

Sampled via random
vectors




Role of Blue
Waters:

= Scale of hardware

= Optimized libraries

Availability of fast,
distributed, optimized SpMV
kernels through PETSC

“a | %

Tested 107 atoms

]
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Impact of

Blue Waters ir -
— 3 B B
Scaling up to 108 atoms E 2] |
Time-dependent E
simulations 1 R
Essential electron 0 | ' -- - -
emission data 0 1 T2 3

: : number of processors .13
Current allocation: bawi

Scaling data (Exploratory allocation, baoq)




Future work/other impacts:

m Technical impact within area
— Ability to solve large systems self-consistently
- Rates of electron transfer for plasma devices

m Outside materials science
- fast, implicit, accurate, projection matrices

m Future
- Time-dependent Hamiltonian (AC voltage)
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