Enzo-E/Cello Project: Enabling Exa-Scale Astrophysics

Andrew Emerick

Columbia University American Museum of Natural History (AMNH)

Greg L. Bryan (Columbia/Flatiron Institute)Mike Norman (San Diego Supercomputing Center (SDSC))Mordecai-Mark Mac Low (AMNH/Columbia/Flatiron)James Bordner (SDSC)Brian O'Shea (Michigan State)Britton Smith (SDSC)John Wise (Georgia Tech)(and more....)

Progress in Astrophysical Hydrodynamics

Progress in Astrophysical Hydrodynamics

Enabled by more powerful HPC systems

Allow for greater dynamic range

More detailed physics

Progress in Astrophysical Hydrodynamics

Enabled by more powerful HPC systems

Allow for greater dynamic range

More detailed physics

Variety of codes and methods:

Lagrangian: SPH, moving mesh

Eulerian: Grid-based codes

Hybrid, meshless codes

Enzo: enzo-project.org/

Adaptive mesh refinement (AMR), cosmological hydrodynamics

C/C++ and Fortran

Enzo: enzo-project.org/

Adaptive mesh refinement (AMR), cosmological hydrodynamics

C/C++ and Fortran

Physics:

Multiple Hydro solvers MHD Cosmic Rays Star formation + stellar feedback Ray-tracing radiative transfer

Cosmology Gravity Particles Radiative heating / cooling Chemistry

Enzo: enzo-project.org/

Adaptive mesh refinement (AMR), cosmological hydrodynamics

C/C++ and Fortran

Physics:

Multiple Hydro solvers MHD Cosmic Rays Star formation + stellar feedback Ray-tracing radiative transfer

Cosmology Gravity Particles Radiative heating / cooling Chemistry

Open Source development and stable code: https://github.com/enzo-project

Scaling and memory management are major shortcoming of current codes

Current scaling to $10^3 - 10^4$ cores (at best)

Scaling and memory management are major shortcoming of current codes

Current scaling to $10^3 - 10^4$ cores (at best)

Load balancing limitations

Scaling and memory management are major shortcoming of current codes

Current scaling to $10^3 - 10^4$ cores (at best)

Load balancing limitations

Significant memory overhead

Scaling and memory management are major shortcoming of current codes

Current scaling to $10^3 - 10^4$ cores (at best)

Load balancing limitations

Significant memory overhead

Scaling and memory management are major shortcoming of current codes

Current scaling to $10^3 - 10^4$ cores (at best)

Load balancing limitations

Significant memory overhead

Limited (if any) utilization of GPUs

Scaling and memory management are major shortcoming of current codes

Current scaling to $10^3 - 10^4$ cores (at best)

Load balancing limitations

Significant memory overhead

Limited (if any) utilization of GPUs

Overhaul necessary to leverage exascale systems

Patch-based, structured AMR

Patch-based, structured AMR

Unbalanced mesh

Patch-based, structured AMR

Unbalanced mesh

MPI communication

Patch-based, structured AMR

Unbalanced mesh

MPI communication

Hybrid particle-mesh methods

Enzo:

Replicates hierarchy across all MPI processes (memory intensive)

Enzo:

Replicates hierarchy across all MPI processes (memory intensive) Patch-AMR is difficult to load balance efficiently

Enzo:

Replicates hierarchy across all MPI processes (memory intensive) Patch-AMR is difficult to load balance efficiently Parent-child communication overheads

Enzo:

Replicates hierarchy across all MPI processes (memory intensive) Patch-AMR is difficult to load balance efficiently Parent-child communication overheads Interpolation required from parent-to-child grids

Enzo:

Replicates hierarchy across all MPI processes (memory intensive) Patch-AMR is difficult to load balance efficiently Parent-child communication overheads Interpolation required from parent-to-child grids Evolution occurs level-by-level across entire computational domain

Enzo-P

scalable astrophysics and cosmology

Cello petascale adaptive mesh refinement

Exascale hydrodynamics from scratch

Open-source: http://cello-project.org/ https://github.com/enzo-project/enzo-e

James Bordner (SDSC) Mike Norman* (SDSC)

... and more:

Matthew Abruzzo (Columbia), Greg Bryan (Columbia), Forrest Glines* (MSU), Brian O'Shea (MSU), Britton Smith (Edinburgh), John Wise (Georgia Tech.), KwangHo Park (Georgia Tech.), David Collins (FSU)....

* = here at the Blue Waters Symposium

Enzo-P

scalable astrophysics and cosmology

Cello petascale adaptive mesh refinement

Exascale hydrodynamics from scratch

"Cello" :

Hierarchy, parallelization Charm++ interaction Easy APIs for use in Enzo-E layer

"Enzo-E" :

Initial conditions generators Block-by-block methods (physics)

Octree-based AMR Balanced Mesh More object oriented programming model Charm++ Parallelization

Octree-based AMR Balanced Mesh More object oriented programming model Charm++ Parallelization Task-based parallelism

Octree-based AMR Balanced Mesh More object oriented programming model Charm++ Parallelization Task-based parallelism Asynchronous execution

Octree-based AMR Balanced Mesh More object oriented programming model Charm++ Parallelization Task-based parallelism Asynchronous execution Automatic load balancing

Enzo:

Replicates hierarchy across all MPI processes (memory intensive) Patch-AMR is difficult to load balance efficiently Parent-child communication overheads Interpolation required from parent-to-child grids Evolution occurs level-by-level across entire computational domain Enzo-E/Cello:

Hierarchy is localized

Enzo:

Replicates hierarchy across all MPI processes (memory intensive) Patch-AMR is difficult to load balance efficiently Parent-child communication overheads Interpolation required from parent-to-child grids Evolution occurs level-by-level across entire computational domain Enzo-E/Cello: Hierarchy is localized

Each block is its own parallel task, independent of level

Enzo:

Replicates hierarchy across all MPI processes (memory intensive) Patch-AMR is difficult to load balance efficiently Parent-child communication overheads Interpolation required from parent-to-child grids Evolution occurs level-by-level across entire computational domain Enzo-E/Cello: Hierarchy is localized

Each block is its own parallel task, independent of level

Charm++ provides significant load balancing and scheduling advantages

Enzo:

Replicates hierarchy across all MPI processes (memory intensive) Patch-AMR is difficult to load balance efficiently Parent-child communication overheads Interpolation required from parent-to-child grids Evolution occurs level-by-level across entire computational domain Enzo-E/Cello: Hierarchy is localized

Each block is its own parallel task, independent of level

Charm++ provides significant load balancing and scheduling advantages Fixed block size allows for efficient, simplified load balancing

Pushing the limits of AMR Hydrodynamics

AMR Hydro Scaling: "Exploding Letters" Test One of largest AMR simulations, run on Blue Waters: 256k cores 1.7 x 10⁹ grid cells (32³ cells per block) 50 x 10⁶ blocks

Impossible to do with Enzo:

Enzo's hierarchy would require 72 GB / proc.!!!

Scaling Results

Goals as a Blue Waters Fellow

Implement physics methods to simulate an isolated, Milky Way galaxy

- a) Gas cooling and chemistry (GRACKLE package)
- b) Background acceleration /potential field
- c) Star Formation
- d) Stellar Feedback (supernova)
- e) Isolated galaxy ICs (with particle support)

Stepping stone to full-physics cosmological simulations

Test-case for how to develop in the new Enzo-E / Cello framework

Defining Community Development in Enzo-E

Similar development structure to Enzo

Migrated code development to github, managed with git

Adopting a pull request development framework

New additions pulled into master via a pull request

Reviewed and accepted by 2-3 developers, with final PR-tsar approval

Development community growing (~5 - 10 people)

Future Work: Exascale Astrophysics

Flux correction

Modern stellar feedback algorithms

AMR Cosmology and isolated galaxy runs

MHD with cosmic rays

Ray-tracing radiative transfer

Block adaptive time stepping

Questions?

