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I use Blue Waters to prototype a parallel computational framework to handle massive
amount of satellite data for large-scale invasive species monitoring

Remote Sensing High Performance Computing
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l Introduction _!

= Saltcedar is an exotic shrub species invading riparian
zones of the United States

- Alter stream hydrology
- Increase soil salinity
- Degrade habitats for native species

Annual economic losses from saltcedar in the US are estimated to be $133-285 million
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Saltcedar Phenology
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l Challenges _E

1) Leaf coloration timing cannot be predicted using current
phenological models
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2) Massive volume of satellite data cannot be adequately
handled by traditional remote sensing systems
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l Objective ’

= Develop a parallel computational framework to model the
spatio-temporal dynamics of saltcedar over the past 40 years

1) Develop computational algorithms that can model the leaf
coloration stage of invasive saltcedar using satellite time
series

2) Devise a high-performance parallel system to prototype the
data- and compute-intensive satellite invasive species
monitoring system
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Parallel computational framework

1. Leat coloration computational algorithms

2. High-performance parallel system



L 4 Computational algorithms a

* To model and predict the timing of saltcedar coloration

1. Multiyear Spectral Angle Clustering Model — sparse satellite
time series (Diao and Wang, Remote Sensing of Environment, 2018)

2. Pheno-network Model — dense satellite time series (Diao, Remote
Sensing of Environment, 2019)

Detect saltcedar at
leaf senescent stage

Saltcedar
3 Phenology
g

ONIYdS

Senescent Saltcedar
(three week period)

Leaf-on Saltcedar
Diao, C. and L. Wang. (2018). Landsat time series-based multiyear spectral angle clustering (IM>AC) model to monitor
the inter-annual leaf senescence of exotic saltcedar. Remote Sensing of Environment, 209, 581-593.

Diao, C. (2019). Complex network-based time series remote sensing model in monitoring the fall foliage transition date
for peak coloration. Remote Sensing of Environment, 229, 179-192.



Multiyear Spectral Angle Clustering Model

* To model the timing of saltcedar coloration with sparse time

series /
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Multiyear Spectral Angle Clustering Model

* To model the timing of saltcedar coloration with sparse time
series

Fall Phenology 2004
< 2 >

rAtA J\/\/\ /\ Leaf coloration in 2004? %

Time series of spectral signature

Reflectance

6 images
Fall Phenology 2003 Fall Phenology 2005

> s [ —
S z
E g
MAgpp [Aaps
P3) )
& A %A A

Time series of spectral signature Time series of spectral signature

12 images 17 images



Reflectance

2) Time series spectral clustering

Reflectance

"\' -
e

Multiyear Spectral Angle Clustering Model

1) Time series spectral outlier removal

(Angle-based outlier detection method)
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3) Time series spectral matching 12/08/2004

(Spectral angle mapper-based moving average method)
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Pheno-network

* To model the timing of saltcedar coloration with dense time
series

Partial vear MODIS
time series
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l Pheno-network Model _!

= Network representation of saltcedar phenological progress

- Node: spectral reflectance obtained on each date of the time series

- Edge: spectral similarity between the spectral nodes

Transition group

Pre-transition group

Post-transition group

Pheno-network with three groups, namely the pre-transition, transition,

and post-transition groups.



l Pheno-network Model _g

= Network measures of saltcedar leaf coloration

- Betweenness Centrality: the transition node serves as the hub connecting
the nodes across phenological stages

- Clustering Coefficient: the neighbors of the transition node are sparsely
connected to each other

Betweenness Centrality
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— Composite Landsat Image

Dec. 14, 2004

(349)

Image acquisition date at
leaf senescence (2004)

Comosite image
(2004)

Composite Landsat Image
Overall Accuracy: 81.25%
Kappa: 0.65

Producer’s Accuracy: 76%
User’s Accuracy: 83%

g

Single Landsat Image
(12/8/2004)

Overall Accuracy: 74.25%
Kappa: 0.49

Producer’s Accuracy: 66%
User’s Accuracy: 79%



Parallel computational framework

1. Leaf coloration computational algorithms

2. High-performance parallel system



l Conventional remote sensing system &

= Conventional remote sensing systems analyze entire
remote sensing imagery as a whole

- High memory requirements and low scalability

= Large-scale remote sensing monitoring is challenging
- Massive amount of satellite imagery

- High demands for computational resources




l High performance parallel system

* The leaf coloration algorithms are designed at the pixel
level o
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* The parallel system decomposes the remote sensing
imagery into a multitude of sub-tiles

- Reduce memory requirement

- Optimize I/O and computation time



l High performance parallel system

The parallel system adopts hybrid computation
models

= Node-level data distribution model — MPI

" Core-level computation model - OpenMP



l High performance parallel system !

= Node-level data distribution model
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The two-level data distribution model: massive data and I/O
operations are evenly distributed among all computing nodes



l High performance parallel system !

= Core-level computation model

(a) 10® percentile of the (b) 40 percentile of the (¢) 70* percentile of the
cosine distance values cosine distance values cosine distance values

Parameter calibration in pheno-network models

Core-level computation model increases computation efficiency while
decreasing memory requirement.



l Why Blue Waters? o

Blue Waters facilitates the processing of massive
amount of satellite data with high spatial, temporal
and spectral dimensions

= [arge storage space
= Access to a large number of nodes

* High-speed simultaneous access to a large number
of 1mages

* Large network bandwidth to increase data
distribution speed



l Scalability of parallel system
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l Saltcedar Distribution Map l
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l Conclusions

1) The multiyear spectral angle clustering and pheno-
network models can model the leaf coloration stage of

invasive saltcedar

2) The high performance parallel system can efficiently
process massive satellite time series with high scalability

3) Invasive saltcedar is displacing native riparian vegetation
over time and space
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