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Evolutionary Organismal Biology:
How do animals work and how do they evolve?
Evolutionary Relationships
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What evolutionary stories lead to functional diversity?
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Evolutionary physiology seeks to understand the
function and evolutionary origin of natural

structures

Evidence of Macroevolution—The Origin of Tetrapods
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fish tetrapods
] Between 385 and 360 million years ago, a
l lineage of fleshy-finned vertebrates evolved four legs and,
l eventually, the ability to walk on land. The steps of this
transition are recorded in the fossils, some of which are
l shown here. Many other lines of evidence, including stratig-
| raphy, comparative anatomy, and genetic comparisons
among modern organisms, support this hypothesis.
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We're using Blue Waters to apply the sam
to breathing
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 dPppro

MAKE GIFS AT GIFSOUP.COM




Crocodiles

. Dinosaurs
Reptiles
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Amphibians

Breathing isn’t so simple



Key Question: Birds and mammals have quite different
pulmonary systems. How do these different lungs work and
how did they evolve?

Eleanor Lutz — Tabletop Whale
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Avian airflow during expiration
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Some Extinct Permian Amniote .
~360 mya

Tidal airflow Unidirectional airflow
Entire lung expands and contracts Air sacs expand and contract
Branching Tree Design Parallel Tube Design



Well, what about the reptiles?
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Well, what about the reptiles?

Although reptile lungs come in many designs, they were
assumed to have tidal airflow, like mammals.
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Well, what about the reptiles?

Although reptile lungs come in many designs, they were
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Many of these lungs actually have unidirectional flow
Reptile lungs deserve a much closer look
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Many of these lungs actually have unidirectional flow
Reptile lungs deserve a much closer look
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age lungs actually have unidirectional flow
Reptile lungs deserve a much closer look
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Monitor lizards are athletes with complex lungs
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We have gained a superficial understanding that
some unidirectional flow occurs...
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Tidal airflow Unidirectional airflow
Entire lung expands and contracts Air sacs expand and contract
Branching Tree Design Parallel Tube Design



Studying the anatomy digitally through CT Scans
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Computational Fluid Dynamics (CFD) Modeling Pipeline
High-fidelity
computational
hexahedral mesh

Segmentation 3D surface model

Image size: 512 x 782 _Exanth_3_Live 13.03.15-$4:45:44-DST-1.3.12.2.11075.1.4.73427 ( 158y, 154y
WL: 464 Ww: 1319 HeadReptile_Research (Adult)
REPTILE_RESEARCH

CT scan

: Compute iterative solution to
discretized NS Equations

Visualization and Analysis of
pulmonary air flow pattern
J l




Blue Waters Makes it Possible!! Model specifics

Software — OpenFOAM Library
Meshing — snappyHexMesh

Solver — dynamic PIMPLE algorithm
transientSimpleDyMFoam

No slip wall conditions

Blue Waters System

1.2 million mesh elements

256 processors

~ 240 hours per simulation

35,000 node hours remaining

deltaT 0.0001 seconds

Allows me to make changes and mistakes!
15 different configurations so far

Visualization assistance from
Mark Van Moer




Pulsating “skin” and inner skeletal architecture

Segmentation
Remove noise
Thresholding to
separate walls from air
Surface reconstruction
Simplification and
smoothing

caudal



Boundary conditions from realistic lung motion

Modeled Resting V; = 17.6 mL
Target V;=17.15
based resting V; 35 mL/kg (Wang et al., 1997)
V; During recovery ranges to 50 mL/kg/lung



Results: Net unidirectional airflow

Net caudal flow in the intrapulmonary bronchus




Results: Lung is a mix of tidal and unidirectional flow
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Results: Net unidirectional airflow
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Results: Net unidirectional airflow
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Early Expiration

Late Expiration
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CFD results were validated on real lungs
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CFD results were validated on real lungs
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Video of streamlines shows net flow and reversal

Expiration e e Medial View
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Distribution of inspired flow to secondary bronchi varies over
the breath cycle

Most air flows from secondary bronchi during expiration



First secondary bronchus is strongly tidal
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Tidal flow in first bronchus may optimize capillary airflow
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Tidal flow in first bronchus may optimize capillary airflow
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Overall Lung Airflow Pattern
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Monitors have hybrid tidal / unidirectional lungs

Net unidirectional airflow:

 Same direction during expiration and
late inspiration

* Intrapulmonary bronchus transports
air mostly caudally

* Secondary bronchi transport air
mostly cranially

e The hilar bronchus (first secondary
bronchus) is fully tidal.

* Analogous to an avian air sac?

* Possible evolutionary pathway
between simple lungs and bird lungs
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Monitors have hybrid tidal / unidirectional lungs




Key Question: Birds and mammals have quite different
pulmonary systems. Why did each lineage develop a different
pulmonary system? What biological traits are associated with

each lung design?

Eleanor Lutz — Tabletop Whale
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Future Directions: compare lung airflow traits across different
monitor species as a test case for vertebrates

90 V. acanthurus acanthurus WAM R117242 I

V. acanthurus brachyurus SAMAR38816 NG
V. acanthurus insulanicus NTM R19076 [N
V. baritji NTM R13150 ]
V. storri storri NTM R25747 |
V. storri ocreatus AMS R125956 I
V. primordius ~ NTM R17884
V. kingorum ~ WAM R151054 N
V. gilleni SAMA R35961 [ ]
Varanus  sp. (Pilbara) WAM R10899¢9 [INENEGGGEN
V. caudolineatus ~ WAM R122576 |
V. eremius  SAMA R35970 (I
V. brevicauda  WAM R102157 ]
V. scalaris similis NTM R10689 |G
V. scalaris scalaris waM R77223 [
V. timorensis ~ ABTC 76484 [N

Varanus sp. (pellewensis) ABTC 80794

sl Monitor lizards range widely in:
V. mitchelli  ABTC 6570 [N .
V. tristis tristis ~ WAM Roso7e NN - bOdy Slze (8g é 9 5 kg)

V. tristis orientalis ~ AMS R143g19 NN

V.glaverti WAMR77266 [ = metabOIIC rate
T | AT E— - Thompson and Withers, 1997

Vs poTC 202 E—— - endurance / activity (40-700 sec)

V. komodoensis  EBU 7947 I

V. salvadorii  ABTC 6571 - Clemente et al.,. 2009
V. panoptes horni ABTC 76485 |

TERRESTRIA oo e AT 2oz — - Habitat (see phylogeny at left)

V. panoptes rubidus WAM R102099 ]

A Q U AT I C V. gouldii gouldii ABTC 76269 I

V. gouldii flavirufus SAMA R24554 ]
A R B 0 R E A V. rosenbergi AMS R123331 I

V. spenceri ABTC 76596 I

V. giganteus SAMA R20988 I
SAXI C O L ' S V. mertensi  AMS R126199 |
V. indicus  sp. group ABTC 76131 ]
V. indicus  sp. group ABTC 13465 _

V.indicus sp.groupAMS R12268¢ [N
V. keithhornei QM J63906 |
V.prasinus ABTC 4792¢ NN

V.savator ABTCES72
V. exanthematicus ABTC 6569 [ ]

V. niloticus ~ ABTC 6484

0.1 substitutions/site FitCh et GI. 2006

V. pilbarensis ~ WAM R132659 |
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Can the co-variation in biological traits and lung designs in
monitor lizards tell us anything about how lungs evolve?

...results in progress! 12 species scanned, 3 CFD models
complete
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Final Outcomes / Broader Impacts

This work is currently in review at The Anatomical Outreach Animations
Record -- Allows publication of movies and 3D How animals breathe

Interactive PDFs in the actual manuscript file Outreach to yoga studios

Local schools

Virtual-reality ready images available on SketchFab INSPIRE Program for the Incarcerated

The CFD model and CT scans associated with the
project will be made available on Data Dryad after
publication —a huge boon to other scientists!
Animations by

Methods are being shared via YouTube tutorials™>"@" RUSSO

called BiOS CFD (CFD is still new to biologists) (Www.yogabunny.com)

= % Yolube BIOScfd o H o0 A ™

BiOS CFD Bgiological OpenSource Computational Fluid Dynamics

Lesson 1: OpenFOAM Case Structure and background
meshing with.blockMesh utility
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