
Recent Collaborators 
Miguel Morales  Livermore 

Carlo Pierleoni  L’Aquila, Italy 

AND many other collaborators over the years! 
DOE-NNSA  0002911  

INCITE & Blue Waters award of computer time

Phase Transitions in dense hydrogen  
with Quantum Monte Carlo�

David Ceperley      University of Illinois Urbana-Champaign



Why study dense Hydrogen? 

•  Applications: 
–  Astrophysics: giant planets, exoplanets 
–  Inertially confined fusion: NIF 

•  Fundamental physics:  
–  What phases are stable?  
–  Superfluid/ superconducting phases? 

•  Benchmark for simulation: 
–  “Simple” electronic structure; no core states 
–  But strong quantum effects from its nuclei 



Simplified H Phase Diagram 



 Questions about the phase diagram 
of hydrogen 

1.  Is there a liquid-liquid transition in dense 
hydrogen?  

2.  How does the atomic/molecular or insulator/
metal transition take place? 

3.  What are the crystal structures of solid H? 
4.  Could dense hydrogen be a quantum fluid? 

What is its melting temperature? 
5.  Are there superfluid/superconducting phases? 
6.  Is helium soluble in hydrogen? 
7.  What are its detailed properties under 

extreme conditions? 



Experiments on hydrogen 

       
Diamond Anvil  

Shock wave (Hugoniot) 



Atomic/Molecular Simulations 
 

 
•  Initial simulations used interatomic potentials based on 

experiment.  But are they accurate enough. 
•  Much progress with “ab initio” molecular dynamics simulations 

where the effects of electrons are solved for each step. 
•  Progress is limited by the accuracy of the DFT exchange and 

correlation functionals for hydrogen 
•  The most accurate approach is to simulate both the electrons 

and ions 
  

– Hard sphere MD/MC   ~1953  (Metropolis, Alder) 

– Empirical potentials (e.g. Lennard-Jones)  ~1960  
(Verlet, Rahman) 

– Local density functional theory ~1985 (Car-Parrinello) 

– Quantum Monte Carlo:  VMC/DMC 1980, PIMC 1990 
 CEIMC 2000 



Quantum Monte Carlo 
•  Premise: we need to use simulation techniques to “solve” 

many-body quantum problems just as you need them 
classically. 

•  Both the wavefunction and expectation values are determined 
by the simulations. Correlation built in from the start. 

•  Primarily based on Feynman’s imaginary time path integrals. 
•  QMC gives most accurate method for general quantum many-

body systems.  
•  QMC determined electronic energy is the standard for 

approximate LDA calculations.  (but fermion sign problem!) 
•  Path Integral Methods provide a exact way to include effects 

of ionic zero point motion (include all anharmonic effects) 
•  A variety of stochastic QMC methods: 

–  Variational Monte Carlo VMC (T=0) 
–  Projector Monte Carlo (T=0) 

•  Diffusion MC (DMC) 
•  Reptation MC (RQMC) 

–  Path Integral Monte Carlo  (PIMC)  ( T>0) 
–  Coupled Electron-Ion Monte Carlo  (CEIMC) 



Regimes for Quantum Monte Carlo 
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Coupled Electron-Ionic Monte Carlo:CEIMC  
 

1.  Do Path Integrals for the ions at T>0. 
2.  Let electrons be at zero temperature, a reasonable 

approximation for T<<EF. 
3.  Use Metropolis MC to accept/reject moves based on 

QMC computation of electronic energy 

 
electrons 

ions 

R 

S èS* 

The “noise” coming from electronic energy can be treated 
without approximation using the penalty method. 



 Liquid-Liquid transition? 

Superconductor 

LLT? 



•  How does an insulating molecular 
liquid become a metallic atomic liquid? 
Either a 
–  Continuous transition  or 
–  First order transition with a critical 

point 
•  Zeldovitch and Landau (1944) “a phase 

transition with a discontinuous change of the 
electrical conductivity, volume and other 
properties must take place” 

•  Chemical models are predisposed to 
have a transition since it is difficult to 
have an smooth crossover between 2 
models (e.g. in the Saumon-Chabrier 
hydrogen EOS) 
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DFT calculations are not very predictive 

100 200 300 400
Pressure (GPa)

0

1000

2000

Te
m

pe
ra

tu
re

 (K
)

Fluid H2

Fluid H

Solid H2

III

I

II

IV

DF2

DF

PBE

HSE-cl
Mazzola diss.

Mazzola IMT

IV’



Liquid-Liquid Transition 
Morales,Pierleoni, Schwegler,DMC, PNAS 2010. 

•  Pressure plateau at 
low temperatures 
(T<2000K)-
signature of a 1st 
order phase 
transition 

•  Seen in CEIMC and 
BOMD at different 
densities 

•  Finite size effects are  
very important 

•  Narrow transition 
(~2% width in V) 

•  Low critical 
temperature 

•  Small energy 
differences 

T=1000K

Three experimental confirmations 
since 2015!!
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Possible resolution (Livermore, 2018) 
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Properties across the transition 
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Comparison of optical properties 

“a” adsorption 
“r”  reflectance 
“p” plateau 
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 Hydrogen Phase Diagram 

Superconductor 

I4/amd 

R-3m 

bcc 
 
fcc 

Based on the BCS theory estimates, we expect 
entire atomic solid to be superconducting at high T 

 But at high pressure! 



How can we use QMC to enable calculations for larger 
systems at longer times? 
 
•  Find better DFT functionals 
•  Find better “semi-empirical” potentials 



 
Use QMC to find the most 
accurate DFT functional. 
 
•  Generate 100’s of  54-96 

atom configurations of 
both liquids and solids. 

•  Determine accurate 
energies (better than 
0.1mH/atom) with DMC. 

 
•  LDA and PBE functionals 

do poorly in the molecular 
phase. 

Histogram of errors in PBE at 3 
densities 

Average errors vs 
functional and density 



In one solid structure find dispersion of errors. 
Then average over solid structures 
 vdW-DF is most accurate. 



Concluding Remarks 
QMC is arguably the most accurate computational method to 
make predictions about properties of hydrogen under 
extreme conditions.
•  DFT functionals give differing results especially near the 
phase transitions.

•  DMC is most accurate for the ground state.
•  CEIMC allows one access to disordered  T>0 systems with 
control of correlation effects

There are many open questions with hydrogen:
•  The sequence of molecular and atomic crystal structures
•  Mechanism of metallization in the solid
•  High temperature superconductivity in LaH10 and SH3.

Future work is to study these with effective potentials 
learned from QMC energetics.


